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Layout of the workshop

Day 1

1. Welcome to TRACC (Ron Kulak)

2. Introduction to Response Surface Methodology (Cezary Bojanowski) 

3. Introduction to Optimization Theory (Vadim Sokolov)

Lunch break  12:30 PM – 1:30 PM

4. Introduction to LS-OPT GUI (Cezary Bojanowski)

5. Running LS-OPT on TRACC cluster (Cezary Bojanowski)

6. Design Optimization (Cezary Bojanowski)
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Layout of the workshop

Day 2

1. Best Practices on TRACC Cluster (Hubert Ley)

2. User defined solver – Perl or OCTAVE (Cezary Bojanowski)

3. Multiobjective Optimization (Cezary Bojanowski)

4. Parameter Identification (Cezary Bojanowski)

Lunch break  12:30 PM – 1:30 PM

5. Probabilistic Analysis  (Ron Kulak)

6. Reliability Based Design Optimization (Cezary Bojanowski)
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Introductory Course: Using LS-OPT® on 

the TRACC Cluster

1.2a – Introduction to Response Surface 

Methodology

By:  Cezary Bojanowski, PhD



Outline of the Presentation

 Introduction

 Steps in Constructing Response Surface

 Other Metamodels

 Strategies for Metamodel-Based Optimization

 Design of Experiments

 Analysis of Metamodeling Errors

 Sensitivity Study 

 Summary
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Introduction

 Response surface methodology (RSM) is a collection of statistical and 
mathematical techniques useful for developing, improving and optimizing 
processes.

 The underlying true response is driven by some unknown physical mechanism. In 
most practical situations it is only know for finite number of discrete sets of input 
variables. 

 In the response surface methodology an approximate response is built based on 
polynomial approximations.
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Advantages

 Response surface smoothes the design response, thus it stabilizes the solution.

 Response surfaces spanned over small regions allow for accurate designs.

 For the optimization process response surface methodology does not require 
analytical derivatives of the true response. Derivatives of the approximate 
response based on polynomials are easy to compute.

 Most applicable to the cases where multiple input variables (design variables) 
potentially influence some performance measure or quality characteristic of a 
product or a process (response).
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RSM – linear regression models

 The observed data are used to approximate the real response by some 
empirical model. 

 The unknown response is a function of design variables:

 If it is dependent on two design variables, it can be approximated by first-order 
response surface model:

  22110 xxy

 xy 

  kk xxxy ...22110

 In general the response y can be related to k regressor variables and can be 
approximated by a multiple linear regression model as:

U.S. Department of Transportation              TRACC   Transportation Research and Analysis Computing Center

8



RSM – linear regression models

 Linear model with interaction term yields nonlinear response surface

  211222110 xxxxy

 Second order response surface model in two variables:

  2112

2

222

2

11122110 xxxxxxy

 Any regression model that is linear in the parameters is a linear regression model 
regardless of the shape of the response surface it generates.

  55443322110 xxxxxy

215

2

24

2

13 ,, xxxxxxx  125224113 ,,  
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Estimation of the Parameters in Linear Regression 

Models

 If the response is known at n points, the model equation can be written as:

iikkiii xxxy   ...22110

i

k

j

ijji xy   
1

0
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 The least squares function is:
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Estimation of the Parameters in Linear Regression 

Models

 In matrix notation the model equation is given as:

εXβy 

 The function of least squares:

   XβyXβyεε 


''L
n

i

i

1

2

XβXβyXβyy '''''L  2

 To minimize the L function, the least square estimators must satisfy:

022 



XbXyX

β
b

''
L
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Estimation of the Parameters in Linear Regression 

Models

 ... which simplifies to the least squares normal equations in matrix form:

yXXbX '' 

 Thus, the least squares estimator of      is: β

  yXXXb ''
1



 And the fitted regression model is: 

Xby ˆ
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 The difference between the observation and the fitted value is a residual: 

yye ˆ



R
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p
o

n
se

Step 1: Define design space 

Response Surface Methodology – Design Cycle

Design Space (Static)
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R
es

p
on

se

Step 2: Define initial region of interest

Response Surface Methodology – Design Cycle

Subregion (dynamic)
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R
es

p
on

se

Experimental design points

Base point

Step 3: Perform Design of Experiments 

Response Surface Methodology – Design Cycle

Subregion (dynamic)
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R
es

p
on

se

Subregion

Response values

Experimental design points

Base point

Step 4: Compute response – LS-DYNA simulations

Response Surface Methodology – Design Cycle
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Step 5: Build response surface

Response surface

R
es

p
on

se

Subregion
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Response Surface Methodology – Design Cycle

Response values

Experimental design points

Base point

Approximated values 
at design points
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Step 6: Optimize
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Response Surface Methodology – Design Cycle

Response surface

(spanned over 
a dynamic subregion) 

Optimum predicted by response surface

(usually on edges of region of interest 
if linear response surface is used )

Optimum computed in additional simulation
(simulation <n+1>.1)

Starting point
(simulation <n>.1)



RSM Linear vs. Quadratic Approximation

 First order polynomials

– The most basic approximation

– The most inexpensive one

– Often oscillations occur when used for SRSM

– Nonetheless, are recommended for sequential approximations for optimization

– Cost is proportional to number of design variables (n)

 Second order polynomials

– More accurate 

– More expensive – cost is proportional to n2

 Both good only for local approximations
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Radial Basis Function Networks for Global 

Approximations

 Accuracy of polynomial models may be not enough for global approximations

 Networks based metamodels can be built for any number of simulation runs

 Network based metamodels can be locally refined maintaining global relevance

 NN’s and RBFN’s can have high accuracy but overfitting may occur 
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Response Surface Methodology vs. Networks 
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Response Surface Networks
regression model network

estimation learning

approximation generalization

observations training set

parameters weights

independent variables inputs

dependent variables outputs



Radial Basis Function Network

– Linear output layer:

– Hidden layer (basis function):

– Center:
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Radial Basis Function Network

– Linear output layer:

– Hidden layer (basis function):

– Center:

U.S. Department of Transportation              TRACC   Transportation Research and Analysis Computing Center

23

 



H

h

hh faaaxy
1

0),( 

 hkhh XX ,...,1X

 f



Number of basis functions

Center location in K dimensional space

weightsbias

– Height of the peak

– Position of center

– Controls the width of the “bell”
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Radial Basis Function Network – Basis Functions

Gaussian function:
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Radial Basis Function Network - Learning 

 Polynomial based response surface:
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 Radial basis function network:
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Construction of Radial Basis Function Network
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Construction of Radial Basis Function Network
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Response

Value of parameter

Training samples

Radial Basis functions
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Construction of Radial Basis Function Network
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Response

Value of parameter

Learned function

Training samples

Radial Basis functions
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Construction of Radial Basis Function Network
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Construction of Radial Basis Function Network
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Response

Design variable 1

Design variable 2

Radial Basis functions

Training samples



Radial Basis Function Network - Example

 RBFN is an universal approximation technique if enough training points are 
provided
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Strategies for Metamodel-Based Optimization

 Single stage

– The experimental design for choosing the sampling points is done only once

– A typical application would be to choose a large number of points (as much as can be 
afforded) to build metamodels such as, RBF networks using the Space Filling sampling 
method.

– Suitable for global design exploration. 

R
es

p
o

n
se

Stage 1
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Strategies for Metamodel-Based Optimization

 Sequential strategy

– Small number of points is chosen for each iteration – Sampling is done sequentially in 
multiple iterations

– Can be stopped as soon as the metamodel or optimum points have sufficient accuracy. 

– Suitable for global design exploration. 

– Both work better with metamodels other than polynomials because of flexibility of 
metamodels to adjust to an arbitrary number of points.

R
es

p
o

n
se

Stage 1

Stage 2
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Strategies for Metamodel-Based Optimization

 Sequential strategy with domain reduction

– Sampling is performed in every iteration. 

– Subregions are used to bound new design points. 

 Two approaches possible:

– Sequential Adaptive Metamodeling (SAM) – global

– Sequential Response Surface Method (SRSM) – local

• Previous points are ignored 

• The only one suitable for polynomial metamodels

R
es

p
o

n
se

Stage 1, subregion 1

Stage 2, subregion 2
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The size of the region of interest controlled by:

− zooming and
− panning parameters 
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Sequential Response Surface with Domain 

Reduction



SRSM with Domain Reduction – Linear Surface

Iteration 1 Iteration 3

Iteration 6 Iteration 9Iteration 8

Iteration 2

Iteration 7
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SRSM with Domain Reduction – Quadratic Surface

Iteration 1 Iteration 3

Iteration 6 Iteration 9
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Convergence Criteria in LS-OPT

refers to the vector of design variables

   
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size of the design space

denotes the value of the objective function

refer to two successive iteration numbers

 Objective function convergence

 Error norm of design variables
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Questions?

 How to select best points to construct the response surface model?

– How many of them?

– What should be their distribution over the design space?

U.S. Department of Transportation              TRACC   Transportation Research and Analysis Computing Center

40



Factors influencing the accuracy

 Size of the region of interest - the smaller the size the more accurate the 
model. To the point when only the noise is dominating. 

 Number of experimental points and their distribution increases the predictive 
capability of the model.

 Order and type of the approximating function. The higher the order the more 
accuracy model has. But to the point when overfitting can occur.

Number of pointsMin number 1.5 x Min number

RMS error
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Design of Experiments 

 The points selected in the DoE process are 
intended to:

– give minimum number of approximation points 
for spanning the response surface with good 
quality, 

– find improved or optimal simulation settings, 

– troubleshoot simulation problems

– make a model more robust. 

 Design of Experiments (DoE) is a process of selection of most representative points 
in the design space for which the response will be calculated.  

 The selection of these points considerably influences the approximation accuracy and 
the cost of response surface construction. 

U.S. Department of Transportation              TRACC   Transportation Research and Analysis Computing Center

42



Two-level Factorial Designs
 The factorial design uses a set of designs where l is a number of levels (grid 

points in one direction) and k is a number of factors (which determines 
the dimension of the space). 

 For example      design with two levels and two factors, would mean that there 
are two design variables and two values can be assigned to them in a given 
design.  

 This design option is efficient for the screening purposes and is a basis for other 
more advanced design methods.

 designs are used commonly to fit first order response surface models

kl

22

k2
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Factorial Design

 three factors at two levels

– good for linear  surface

 three factors at three levels

– good for quadratic surface

33

32
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Koshal Design

 The Koshal design uses the minimum number of the design points required to 
construct surface of given order. 

 The approach leads to the saturated design which is characterized by the same 
number of points as the number of coefficients of the approximation function.  

 It influences the accuracy of the surface approximation.  

 If simulation fails in one of the points – the surface can not be constructed
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 first order n=2 design 



Koshal Design
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 second order n=3 design

– good for quadratic model

 first order n=3 design 

– good for linear model



Central Composite Design
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 For two variables the design consist of 8 equally spaced points on the 
perimeter of a circle with radius         and central point

 As a basis factorial design is used

 Four axial points and central point are added

 factorial (for linear)  CCD (for quadratic)

2



Central Composite Design
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 Axial distance generally can vary from 1.0 (face center points) to           on 
common sphere  

 With n variables the design requires                                    points 
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 Optimal design theory  developed for best choice of points. 

 D-optimal was proven to be one of the best of optimal designs.

 It uses points that are solution to the sub-problem:

 This criterion assures best estimation of parameters (low bounds for 
confidence regions on regression coefficients). 

D-optimal Design
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D-optimal Design

 Usually subset from the grid of  factorial designs is taken as a candidate for D-
optimal design.  

 The advantage of D-optimal design is that it allows for approximation of 
irregular shapes, with any number of experimental points

 The D-optimal design can be also useful for constrained design space, where 
standard factorial method would fail

 Experimental points from previous iterations can be easily incorporated in 
subsequent ones to increase the accuracy of a new experimental design. 
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D-optimal Design

 Based on the D-optimal method of point’s selection, for n number of the design 
points in the linear approximation the number of simulations needed to be 
performed is equal to:

  int 1.5 1 1n 

 The number of simulations in the quadratic approximation:

   int 0.75 1 2 1n n  
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 50% +1 points more than would be required by saturated design.

 Oversampling guaranties that the surface will be created even if LS-DYNA 
(solver) fails at some points. 



Number of Design Points
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LS-OPT manual, LSTC, April, 2009



Point Selection in LS-OPT

 Factorial

 Koshal

 Composite

 D-Optimal

 Monte Carlo

 Latin Hypercube

 Space Filling 

 User Defined
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Questions?

 Is the model a good approximation of 
the real, physical process?

 What is the error of the metamodel?

 How to quantify and how to minimize 
it?

 What are prediction capabilities of 
the model?
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Error Analysis

Response surface

R
es

p
on

se
Modeling error

Random error

Unknown real response

 Two sources of errors are present in surrogate model based design: 
• Random error (noise)
• Modeling error (difference between real and predicted response)

 Adequacy of the surrogate model and its capability of predicting accurate response 
must be checked
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Metamodeling Errors in LS-OPT

n

ˆ iy

iy

number of design points

predicted response

the actual (computed) response

iyiy ˆmaxmax 

 Root mean square error (RMS) 
− summarizes overall model error
− used for saturated model will give zero value 

 Maximum error
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Prediction Sum of Squares (PRESS) Error

Leave-one-out:

 Select an observation, for example i.

 Fit the model to the remaining n – 1 observations 

 Use model equation to predict the withheld observation yi

 Repeat the procedure for each of them

 Compute the sum of squares
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Prediction Sum of Squares (PRESS) Error

 In fact PRESS does not need to compute n regression models. 

 where “hat” matrix:

 maps observed response to the fitted response: 
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iŷiy
PRESS

1

2

1

  TT
XXXXH

1


Hyy ˆ

 Large discrepancy between SPRESS and residual sum of squares indicates high 
influence of one observation on the response – model performs badly 
without it.



Coefficient of Multiple Determination

 Indicates if the model is able to detect variability in the response.
 A fraction of the variation in the data explained by the model.

 Takes values:

 Adding a variable to the model always increases the coefficient of multiple 
determination
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Coefficient of Multiple Determination

 In the iterative scheme with shrinking region the R-sq tends to be small at the 
beginning, then goes to unity when the region shrinks – improves the modeling 
ability.

 It may reduce again when the noise starts to dominate the response causing 
variability to be indistinguishable.
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Metamodeling Accuracy

 predicted vs. computed response in LS-OPT viewer
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Questions?

 Are the variables used in the model 
important for the response

 Which of them are most crucial for 
the response?
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Sensitivities

jjpn,jjjjpn,j CˆtbCˆtb 2

2

2

2    

Xby ˆεXβy  recall that :                                 and 

 is normally distributed with mean vector     jb j

jb
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Sensitivities

Significance of the variable normalized with respect to design space
(df/dx) * (xUpper - xLower)

Uncertainty of variable distributed as t

 Used for screening of variables with small contribution to the response
 Allows to lower the number of simulation runs 

Insignificant variable
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Metamodel Based Optimization Process – Summary 
Item Input data Output data

Design of Experiments

 Location and size of the subregion 
in the design space, 

 The experimental design desired,
 An approximation order,
 An affordable number of points.

 Location of the experimental 
points.

Simulation
 Location of the experimental points,
 Analysis programs to be scheduled.

 Responses at the experimental 
points.

Build response surface 
 Location of the experimental points,
 Responses at the experimental points,
 Function types to be fitted.

 The response surface,

Check adequacy

 The approximate functions (response 
surfaces),

 The location of the check points,
 The responses at the check points.

 The goodness-of-fit 
of the approximate functions at 
the check points.

Optimization
 The approximate functions (response 

surfaces),
 Bounds on the responses and variables.  

 The approximate optimal design,
 The approximate responses at 

the optimal design,
 Pareto optimal curve data.
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