
Introductory Course: Using LS-OPT® on 
the TRACC Cluster

3 – Numerical Optimization

By:  Vadim Sokolov, PhD

Some of the slides are adopted from lecture noted from the MIT course  16.888 / ESD.77 “Multidisciplinary System Design 

Optimization”

Some of the figures were adapted from Numerical Optimization, Jorge Nocedal and Stephen J. Wright, Springer, 1999



Different Algorithms for Different Optimization 
Problems

� Constraint vs. Unconstraint

� Type of constraints (equality vs. inequality)

� Global solution vs. Local Solution

� Stochastic vs. Deterministic

� Size of the problem (number of design variables)� Size of the problem (number of design variables)

� Type of design variables (real vs. integer, continuous vs. discrete)

� Linear vs. Nonlinear

� Discontinuous feasibility space
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Constrained and Unconstrained Optimization 

min
x∈Rn

f(x) subject to

{
ci(x) = 0, i ∈ E

ci(x) ≥ 0, i ∈ I
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min
x∈R2

(x1 − 2)2 + (x2 − 1)2 subject to

{
x21 − x2 ≤ 0
x1 + x2 ≤ 2



Numerical Methods 

Unconstrained Constrained

Line Search

Trust Region

Conjugate Gradient

Newton Methods

Quasi-Neweton

LFOP

Simplex Method (linear programming)

Interior-Point Methods (linear program.)

SLP

SQP

Penalty Method

Barrier MethodLFOP Barrier Method

Augmented Lagrangian Methods

LFOPC
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Linear vs. Nonlinear

The objective function is a linear function of the design 

variables if each design variable appears only to the 

first power with constant coefficients multiplying it.

f(x) = x1 + 2x2 – 3.5x3 is linear in x = [x1, x2, x3]
T

f(x) = x1x2 + 2x2 – 3.5x3 is nonlinear in x

f(x) = cos(x1) + 2x2 – 3.5x3 is nonlinear in x
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Linear vs. Nonlinear

A constraint is a linear function of the design variables 

if each design variable appears only to the first 

power with constant coefficients multiplying it.

x1 – 2 x2 + 5x3 < 20            is linear in x

x1 – 2 x2 + 5x3
2 < 20           is linear in x

x1 – 2 sin(x2) + 5x3 < 20     is linear in x
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Global and Local Optimization

� The fast optimization algorithms seek only a local solution (objective 

function is smaller than all other feasible points in its vicinity)

� The local solution is not always the best of all such minima, the global 

solution

� Usually it is hard to say whether global solution exists or not. Even harder 

to find the global solution.to find the global solution.

� There is certain class of problems for which all local solutions are also 

global solutions  - convex programming

� Linear programming problems are convex

� Many global optimization algorithms proceed by solving a sequence of 

local optimization problems 
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Global minimizer is hard to find
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Iterative Optimization Procedures

Most optimization algorithms are of an iterative nature 

Starting with initial guess x0

xi = xi-1 + αi pi

i – iteration number

p – search direction vector

αi - search distance

The optimization algorithm determines the direction p and the 

distance αi. 

Gradient based algorithms use the gradient to calculate the 

direction.
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Gradient

Given function f(x), where x is a vector, x = [x1,x2,…,xn]

The gradient at point y is a vector





∂f

∂x1
(y)

∂f




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∇f(y) =






∂f

∂x2
(y)

...
∂f

∂xn
(y)








Hessian Matrix

Given function f(x), where x is a vector, x = [x1,x2,…,xn]

The second derivate of f(x) at point y is a matrix of 
size n×n 



∂2f

∂x21

∂2f

∂x1∂x2
. . .

∂2f

∂x1∂xn
∂2f . . ..




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H(y) = ∇2f(y) =




∂2f

∂x1∂x2

. . .
...

...
. . .

...
∂2f

∂x1∂xn

∂2f

∂x2n




Each element of the matrix is evaluated at point y



Calculate Hessian and Gradient

f(x) = 2x2 + x1 x2 + 3x3
2 + x2

2 x3

U.S. Department of Transportation              TRACC   Transportation Research and Analysis Computing Center

12



Taylor Series

When the variable is a scalar

When variable  is a vector

f(x+ h) = f(x) + f ′(x)h+ 1
2
f ′′(x)h2 + ...

When variable  is a vector
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f(x+ h) = f(x) + ∇f(x)T h+ 1
2 hT H(x) h+ ...

1×n           n×1              1×n         n×n n×1



Finite difference approximation

x = (x1,…,xn)

δ = some small number (i.e. 10-6)

Approximate derivative with respect to xi

consider δx = (x1,…,xi+δ,…,xn)

∂f f(δx) − f(x)

Approximation for second derivative

consider δx- = (x1,…,xi-δ,…,xn)
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∂f

∂xi
≈

f(δx) − f(x)

δ

∂2f

∂x2i
≈

f(δx) − 2f(x) + f(δx−)

δ2



What is a Solution?

� A point x* is a global minimizer if

� A point x* is a local minimizer if

f(x∗) ≤ f(x) for all x

� A point x* is a local minimizer if

� A point x* is a strict local minimizer if
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f(x∗) ≤ f(x) for all x in some neighborhood of x

f(x∗) < f(x) for all x in some neighborhood of x



Recognizing a Local Minima (Taylor’s theorem)

� If f is continuously differentiable then

� If f  is  twice continuously differentiable then

f(x+ p) = f(x) + ∇f(x+ tp)T p, for some t ∈ (0, 1)

f(x+ p) = f(x) + ∇f(x)Tp+ 1
2p
T∇2f(x+ tp)T p, for some t ∈ (0, 1)
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� If x* is a local minimizer then  ∇ f(x*)=0. If ∇ f(x*)=0 then x* called a 

stationary point 

� If x* is a local minimizer then  ∇ f(x*)=0 and ∇2f(x*)>0 is positive definite. 
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∇2 f(x) is called Hessian and sometimes denoted by H(x)



Positive Definite Matrices

� Positive definiteness:                           for all non-zero y

� Two ways to identify positive definiteness

1) Consider eigenvalues of H: 

If H is non-singular symmetric then eigenvectors form an orthogonal basis, i.e any 

vector y can be represented as a linear combination of eigenvectors

y =
∑

i aivi

yTHy > 0

Hvi = λivi

Then 

Therefore all of the eigenvalues of H are positive

2) Apply Cholessky decomposition algorithm to H and in case it doesn’t break 

down matrix H is SPD.
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yTHy =
∑

i

aiv
T
i H

∑

j

ajvj =
∑

i,j

aiv
T
i λjajvj =

∑

i

a2iλi

y =
∑

i aivi



Sufficient Conditions for Unconstrained Problem

∇ f(x*)=0 

∇2f(x*)>0

x* is a local minimizer
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1. Gradient vanishes

2. Hessian is positive definite

Note when  ∇2f(x)>0 for all values of x, then local 

minima is also a global minima!



Existence and uniqueness for equality constrained 
problems

min x1 + x2

s.t x1 
2+ x2 

2-2=0

feasibility set = circle of radius 

solution is x = (-1,-1)
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At the solution the constraint normal ∇c1(x
*)

Is parallel to ∇ f(x*). That is for some scalar α

∇f(x∗) = λ∗1∇c1(x
∗)



Lagrangian Function

L(x, λ1) = f(x) − λ1c1(x)

∇xL(x, λ1) = ∇f(x)− λ1∇c1(x)
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∇xL(x
∗, λ∗1) = 0

Necessary but not sufficient



Existence and Uniqueness for Inequality 
Constrained Problems

Sign of the Lagrange multiplier is curtail!

min x1 + x2

s.t. x21 + x22 − 2 ≤ 0

We also require that 
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∇xL(x
∗, λ∗1) = 0, for some λ∗1 ≥ 0

λ∗2c1(x
∗) = 0



First Order Optimality. Karush-Kuhn-Tucker (KKT) 
Conditions

Suppose that x* is a local solution, then for some vector λ∗

∇xL(x
∗, λ∗1) = 0
ci(x

∗) = 0, for all i ∈ E

U.S. Department of Transportation              TRACC   Transportation Research and Analysis Computing Center

22

ci(x
∗) = 0, for all i ∈ E

ci(x
∗) ≥ 0, for all i ∈ I

λ∗i ≥ 0, for all i ∈ I

λ∗i ci(x
∗) ≥ 0, for all i ∈ I

⋃
E



KKT: Interpretation

1. Constraints are satisfied

2. If constraint is not precisely satisfied 

then the corresponding Lagrange 

multiplier is zeromultiplier is zero

3. The gradient of the Lagrangian vanishes 

at the local solution

U.S. Department of Transportation              TRACC   Transportation Research and Analysis Computing Center

23



Convex Sets 

Consider a set, and imagine drawing a line connecting any two points in the set.

If every point along that line is inside the set, then the  set is convex.

If any point along that line is outside the set, then the  set is non-convex.

The line connecting points x1 and x2 is given by

U.S. Department of Transportation              TRACC   Transportation Research and Analysis Computing Center

24

w = αx1 + (1 − α)x2, 0 ≤ α ≤ 1



Convex Functions

convex                  concave neither
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A function f(x) is convex if 

f(αx1 + (1 − α)x2) ≤ αf(x1) + (1 − α)f(x2)



Convex Spaces

Pick any two points in the feasible region. If all points on the line 

connecting these points lie in the feasible region, then the  

constraint surfaces are convex.

If the objective function is convex, then it has only one optimum (the 

global one) and the Hessian matrix is positive definite for all global one) and the Hessian matrix is positive definite for all 

possible designs.

If the objective function and all constraint surfaces are convex, then 

the design space is convex, and the Kuhn-Tucker conditions are 

sufficient to guarantee that x* is a global optimum.

In general, for engineering problems, the design space is not convex ...
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Optimization Process (Line Search) 1/2

X0, i=0

Calculate ∇f(xi)

Calculate pi

=
i+

1

Perform 1-d search 

xi = xi-1 + αipi

Converged?
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yesno
Done

i=
i+

1



Optimization Process (Line Search) 2/2

pi – search direction

usually the search direction has the form

−1
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pi = −B−1
i fi



Unconstrained Problems: Solution Methods

� First-Order Methods

– use gradient information to calculate p

– steepest descent method

– conjugate gradient method

– quasi-Newton methods– quasi-Newton methods

� Second-Order Methods

– use gradients and Hessian to calculate p

– Newton method

� Often, a constrained problem can be cast as an 

unconstrained problems and these techniques used.
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One-Dimensional Search (Choosing αααα)

� Polynomial interpolation

– pick several values for α

– fit polynomials to f(α)

– efficient, but need to be careful with implementation

� Golden section search� Golden section search

– easy to implement, but inefficient

� The one-dimensional search is one of the more challenging 

aspects of implementing a gradient-based optimization 

algorithm
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Steepest Descent

pi = -∇ f(xi-1)

Algorithm:

choose x0, x = x0

Repeat until converges:

p = - f(x)pi = - ∇ f(x)

choose α to minimize f(x+α p)

x = x+ α pi

• Uses only information for the previous step

• Slow convergence
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Conjugate Gradient

p1 = -∇ f(x0)

pi = -∇ f(xi-1) + βi pi-1

βi =
|∇J(xi−1)|

2

|∇J(x )|2

• Search directions are conjugate (pi 
THpK = 0, 

sometimes called H-orthogonal)

• Makes use of information from previous 

iterations
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βi =
|∇ − |
|∇J(xi−1)|2



Newton’s Method (1/2)

Taylor Series:

Approximate ∇ f(x+h) ≈ ∇ f(x) + H(x)h

At optimum  ∇ f(x*) = 0

f(x+ h) = f(x) + ∇f(x)T h+ 1
2 hT H(x) h+ ...

At optimum  ∇ f(x*) = 0

∇ f(x) + H(x)h = 0

h = -H(x)-1∇ f(x)
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Newton’s Method (2/2)

pi = - H(xi-1)
-1∇ f(xi-1)

� if f(x) is quadratic, method gives exact solution in one 

iteration

� if f(x) not quadratic, perform Taylor series about new point � if f(x) not quadratic, perform Taylor series about new point 

and repeat until converged

� a very efficient technique if started near the solution

� H is not usually available analytically, and finite difference is 

too expansive (n×n matrix)

� H can be singular if f is linear in a design variable
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Quasi Newton

pi = - Ai ∇ f(xi-1)
� Also known as variable metric methods

� Objective and gradient information is used to create an approximation to 

the inverse of the Hessian

� A approaches H-1 during optimization of quadratic functions

� Convergence is similar to second-order methods (strictly 1st order)

� Initially: A=I, so p is steepest descent direction� Initially: A=I, so p1 is steepest descent direction

then:      Ai+1 = Ai + Di

where D is a symmetric update matrix

Di = fn(xi-xi-1,∇ f(xi) - ∇ f(xi-1), Ai)

� Various methods to determine D

e.g. Davidon-Fletcher-Powell (DFP)

Broydon-Fletcher-Goldfarb-Shanno (BFGS)

U.S. Department of Transportation              TRACC   Transportation Research and Analysis Computing Center

35



Constrained Problems: Solution Methods

� Sequential Linear Programming

�Penalty and Barrier Methods

� Sequential Quadratic 

Programming

�Mixed Integer Programming
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min
x∈Rn

f(x) subject to

{
ci(x) = 0, i ∈ E

ci(x) ≥ 0, i ∈ I



Constrained Optimization: Vocabulary

� Feasible design: a design that satisfies all constraints

� Infeasible design: a design that violates one or more 

constraints

� Optimum design: the choice of design variables that 

minimizes the objective function while satisfying all 

constraints

In general, constrained optimization algorithms try to 

cast the problem as an unconstrained optimization 

and then use one of the techniques we looked at.
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Linear Programming (1/2)

Most engineering problems of interest are nonlinear

� Can often simplify nonlinear problem by linearization

� LP is often the basis for developing more complicated NLP 

algorithms

Standard LP problem:Standard LP problem:
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min
x

f(x) =

n∑

i−1

cixi

s.t.

n∑

i=1

aijxi = bj , j = 1, ...,m

xi ≥ 0, i = 1, ..., n

min
x

f(x) = cTx

s.t. Ax = b

xi ≥ 0, i = 1, ..., n



Linear Programming (2/2)

To convert inequality constraints to equality 

constraints, use additional design variables:

n∑
aijxi ≤ bj

n∑
a x + x = b

Where xn+1 is non negative

xn+1 is called a slack variable
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∑

i=1

aijxi ≤ bj
∑

i=1

aijxi + xn+1 = bj



Sequential Linear Programming (1/3)

Consider a general nonlinear problem linearized via first 

order Taylor series:

minx f(x) ≈ f(x0) + ∇f(x0)δx

s.t ci(x) ≈ ci(x0) + ∇ci(x0)δx ≥ 0, i ∈ E

This is an LP problem with the design variables  contained 

in δx. The functions and gradients evaluated at x0 are 

constant coefficients.
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ci(x) ≈ ci(x0) + ∇ci(x0)δx = 0, i ∈ I

where δx = x − x0



Sequential Linear Programming (2/3)

1. Initial guess x0

2. Linearize about x0 using first-order Taylor series

3. Solve resulting LP to find δx

4. Update: x1 = x0 + δx4. Update: x1 = x0 + δx

5. Linearize about x1 and repeat:

xi= xi-1 + δx

where δx is the solution of an LP (model linearized

about xi-1).
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Sequential Linear Programming (3/3)

� Linearization approximation is only valid close 

to x0

� Need to restrict size of update δx

� Not considered to be a good method� Not considered to be a good method
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Sequential Quadratic Programming (1/4)

� Create a quadratic approximation to the 

Lagrangian

� Create linear approximations to the 

constraints

� Solve the quadratic problem to find the search � Solve the quadratic problem to find the search 

direction, p

� Perform the 1-D search

� Update the approximation to the Lagrangian
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Sequential Quadratic Programming (2/4)

Create a sub problem with quadratic objective function 

and linear constraints

minp Q(pi) = f(xi) + ∇f(xi)
T pi +

1

2
pTWip

∇ T ≥ ∈

W=I for i=0 and then W is an approximation of the 

Hessian
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s.t. ∇cj(xi)
T pi + ci(xi) ≥ 0, j ∈ I

∇cj(xi)
T pi + ci(xi) = 0, j ∈ E



Sequential Quadratic Programming (3/4)

� The constraints of the subproblem can be incompatible, even if the original 

problem has a well-posed solution

� For example, two linearized constraints could be linearly dependent

� This is a common occurrence in practice

� Likelihood of incompatible constraints reduced by allowing flexibility in RHS 

� Typically γ=0.9 if constraint is violated and γ=1 otherwise

� Doesn’t affect convergence, since specific form of constraint is only crucial when xi

is close to x*
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∇cj(xi)
T pi + γici(xi) = 0, j ∈ E



Sequential Quadratic Programming (4/4)

� Widely used in engineering applications 

� Considered to be the best gradient-based 

algorithm

� Strong theoretical basis
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Subproblems

� Many optimization algorithms get to the optimum by generating and solving a 

sequence of unconstained subproblems.

� One fundamental approach to constrained optimization is to replace the original  

problem by a penalty function that consists of

– the original objective of the constrained optimization problem, plus

– one additional term for each constraint, which is positive when the current point 

x violates that constraint and zero otherwise.

� Typically there are two tasks at each iteration:� Typically there are two tasks at each iteration:

– Calculate search direction

– Calculate the step length

� Sometimes, the initial formulation of a subproblem may be defective i.e.the

subproblem has no solution or the solution is unbounded

� A valid subproblem is one for which a solution exists and is well defined

� The option to abandon should be available if the subproblem appears defective

� It is possible that a defective subproblem is an accurate reflection of the original 

problem having no valid solution
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Penalty and Barrier Methods 

General Approach:

1. minimize objective as unconstrained function

2. provide penalty to limit constraint violations

3. magnitude of penalty varies throughout optimization

4. called sequential unconstrained minimization techniques (SUMT)

5. create pseudo-objective:

f(x) = original objective function

P(x) = imposed penalty function

rp= scalar multiplier to determine penalty magnitude

p= unconstrained minimization number
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Φ(x, rp) = f(x) + rpP (x)



Mixed Integer Programming 

� Rounding

–unlikely to achieve optimum discrete solution

–rounded solution may be infeasible

� Branch and Bound

–create tree with several optimization branches–create tree with several optimization branches

–continuous solution is a lower bound on the mixed 

solution

–usually solve a large number of optimization 

problems

–expensive
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Leapfrog Optimizer for Constrained minimization 
(LFOPC) 

� First order method (uses gradient ∇ f(x))

� No explicit line search performed compared to SQP

� Is robust and handles steep valleys and discontinuous 

functions and gradients

� The algorithm seeks low local minimum and can be used as a � The algorithm seeks low local minimum and can be used as a 

basic component in a methodology for global optimization

� The method is not as efficient as classical methods on smooth 

and near-qudratic functions
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LFOP: Basic algorithms for unconstrained problem (1/2)

� Assume a particle of unit mass in n-dimensional conservative force field

� Potential energy at x given by f(x)

� Force at x is -∇ f(x)

� Equation for motion of the particle (Second Newton’s Law)

� The motion of the particle over time period  [0,t]:

a = ẍ = −∇f(x)

1 1

As kinetic energy increases, f(x(t)) decreases
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1

2
||ẋ(t)||2 −

1

2
||ẋ(0)||2 = f(x(0))− f(x(t))

or
T (t) − T (0) = f(0) − f(t)

1
2 ||ẋ(t)||

2 - kinetic energy. Conservation of energy:

1

2
||ẋ(t)||2 + f(x(t)) = constant



LFOP: Basic algorithms for unconstrained problem (2/2)

� Compute the dynamic trajectory by solving the initial-value problem (IVP)

� Monitor .  As long as ||v(t)||  increases, f(x) decreases

� When ||v(t)|| decreases apply some interfering strategy to extract energy and 

therefore increase the likelihood of descent

� In practice the leap-frog scheme is used to integrate the IVP numerically with time 

step t

ẍ(t) = −∇f(x(t))

ẋ(0) = 0, x(0) = x0

ẋ(t) = v(t)

step ∆t

� A typical interfering strategy  is  if ||vi+1|| > ||vi|| continue, else:

compute new  vi+1 and continue 
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xi+1 = xi + vi∆t

vi+1 = vi + ai+1∆t

where ai = −∇f(xi), v0 =
1

2
a0∆t

vi =
vi+1 + vi

4
, xi =

xi+1 + xi

2



LFOPC: Modification for Constrained Problems

LFOP is applied to a penalty function

µ is called penalty parameter

Phase 0: given x0, µ = µ0 = (102) apply FLOP to f(x, µ0) to get x*(µ0)

P (x, µ) = f(x) + µ
∑

i∈E

c2i (x) +
∑

i∈I

βic
2
i (x)

where bi =

{
0, ci(x) ≤ 0
µ, ci(x) > 0

Phase 0: given x0, µ = µ0 = (10 ) apply FLOP to f(x, µ0) to get x (µ0)

Phase 1: x0 = x*(µ0), µ = µ1 = (104) apply FLOP to f(x, µ1) to get x*(µ1) and identify active 

constraints

Phase 2: with x0 = x*(µ1), apply FLOP to minimize 

Notes: Default parameters for FLOPC are listed in section 20.6 Setting parameters in the 

LFOPC algorithm of the manual.  Scaling is used in the numerical implementation of the 

algorithm
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i ∈ A, if ci(x
∗(µ1)) > 0

PA(x, µ1) = f(x) + µ
∑

i∈E

c2i (x) +
∑

i∈A

βic
2
i (x)



Heuristic Optimization Techniques

Main Motivation for Heuristic Techniques:

1. To deal with local optima and not get trapped in them

2. To allow optimization for systems, where the design variables 

are not only continuous, but discrete,  integer or even 

Boolean

x = (1,2,3,4), x = (‘a’,’b’,’c’) x = (1,0,1,0,0,1)x = (1,2,3,4), x = (‘a’,’b’,’c’) x = (1,0,1,0,0,1)

These techniques do not guarantee that global 

optimum can be found. Generally Karush-Kuhn-

Tucker conditions do not apply.

U.S. Department of Transportation              TRACC   Transportation Research and Analysis Computing Center

54



Algorithms

� Genetic Algorithms (Holland – 1975)

– Inspired by genetics and natural selection

� Simulated Annealing (Kirkpatrick – 1983)

– Inspired by molecular dynamics – energy minimization

� Particle Swarm Optimization (Eberhart and Kennedy - 1995)

– Inspired by the social behavior of swarms of insects or 

flocks of birds

These techniques all use a combination of randomness and 

heuristic “rules” to guide the search for global maxima or 

minima
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Basics

� Natural Selection is a very successful organizing principle for 

optimizing individuals and populations of individuals

� If we can mimic natural selection, then we will be able to 

optimize more successfully

� A possible design of a system – as represented by its design � A possible design of a system – as represented by its design 

vector x - can be considered as an individual who is fighting 

for survival within a larger population.

� Only the fittest survive – Fitness is assessed via objective 

function f.
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Natural Selection

Charles Darwin (1809-1882)

Extremely controversial and influential book (1859) On the origin 

of species by means of natural selection, or the preservation 

of favored races in the struggle for life 

Observations:

� Species are continually developing

� Homo sapiens comes from ape-like stock

� Variations between species are enormous

� Huge potential for production of offspring, but only a small 

percentage survives to adulthood 

Evolution = natural selection of inheritable
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Inheritance of Characteristics

Gregor Mendel (1822-1884)

Investigated the inheritance of characteristics (“traits”) Conducted extensive 

experiments with pea plants Examined hybrids from different strains of plant

tall tall tall

short short shortshort short short

tall tall short

Tall – dominant gene

Short – recessive gene
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GA Terminology

chromosome

individuals
population

gene

selection

crossover
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Generation n Generation n+1

crossover

insertion

mutation

genetic operations



Chromosomes

Chromosome (string)

0 1 0 111 0 1 00 1 …………. 0 1

Each chromosome represents a solution, often using strings of 0’s and 1’s. Each chromosome represents a solution, often using strings of 0’s and 1’s. 

Each bit typically corresponds to a gene. This is called binary encoding. 

The values for a given gene are the alleles. 

A chromosome in isolation is meaningless need decoding of the chromosome 

into phenotypic values
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GA Over Several Generation
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Selection (1/4)

� Goal is to select parents for crossover

� Should create a bias towards more fitness

� Must preserve diversity in the population

(1) Selection according to RANKING

Example:  Let D = ∑j ∈ P (1/j)Example:  Let D = ∑j ∈ P (1/j)

select the kth most fit member of a 

Population to be a parent with 

probability Pk = (1/k)D-1

Better ranking has a higher probability 

of being chosen
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Selection (2/4)

� Proportional to FITNESS Value Scheme

� Let F = ∑j ∈ P Fittness(j)

Select kth most fit member of a population to be a parent with 

probability 

P = Fitness(k)F-1Pk = Fitness(k)F-1

Probability of being selected for crossover is  directly 

proportional to raw fitness score.

This scheme tends to favor the fittest individuals in a population 

more than the ranking-scheme, faster convergence, but can 

also be a disadvantage.
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Selection (3/4) - Roulette Wheel Selection

Probabilistically select individuals based on some measure of their 

performance.

Sum: Sum of individual’s selection probabilities

3rd individual in current

Selection: generate random number in [0,Sum] Repeat process until desired # 

of individuals selected Basically: stochastic sampling with replacement 

(SSR)
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3rd individual in current

population mapped to 

interval [0,Sum]



Selection (4/4) - Tournament Selection
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Crossover

Question: How can we operate on parents P1 and P2 to create 

offspring O1 and O2 (same length, only 1’s and 0’s)?

U.S. Department of Transportation              TRACC   Transportation Research and Analysis Computing Center

66



Crossover in Biology

child

This is where the 

word crossover comes 
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word crossover comes 

from

ac
Crossover produces

either of these results

for each chromosome

ac OR ad OR bc OR bd



Crossover Operator (1/3)

Crossover (mating) is taking 2 solutions,

and creating 1 or 2 more

Classical: single point crossover

Crossover point

P1 O1

U.S. Department of Transportation              TRACC   Transportation Research and Analysis Computing Center

68

The children

(“offspring”)

The parents

P2
O2



Crossover Operator (2/3)

More on 1-point crossover ….

P1 0  1  1  0  1 l = length of 0  1  1  1  1 C1 

chromosome

P2 1  0  0  1  1 1  0  0  0  1 C2

i=3 i = 1,2,…,l-1 i=3 l=5
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A crossover bit “i” is chosen (deliberately or randomly),

splitting the chromosomes in half.

Child C1 is the 1st half of P1 and the 2nd half of P2

Child C2 is the 1st half of P2 and the 2nd half of P1

i=3 i = 1,2,…,l-1 i=3 l=5



Crossover Operator (3/3)

2-point crossover or a multi-point crossover

The essential aspect is to create at least one child (solution/design) from two (or
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The essential aspect is to create at least one child (solution/design) from two (or

more) parent (solutions/designs) 

- there are many solutions to do this

- do not necessarily have to do crossover, and do crossover with a 

probability Px after pairs are chosen

Some crossover operations:

- single point, versus multiple point crossover

- path relinking

- permutation operators (list operators), incl. Random keys approach



Stopping Criteria

� No improvement in the last few generations

� Fixed number of generations or function evaluations 

(A user defined number of generations is used as the 

stopping criterion in LS-OPT)

The best individual (among all searched individuals) � The best individual (among all searched individuals) 

is reported as the optimal solution

� Hope is that the reported best individual would 

represent the global optimal solution.
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Elitism

� The best chromosome (or a few best chromosomes) 

is copied to the population in the next  generation. 

� The rest are chosen in classical  way. 

� Elitism can very rapidly increase performance of GA, 

because it  prevents losing the best found solution to because it  prevents losing the best found solution to 

date.  

� A variation is to  eliminate an equal number of the 

worst solutions, i.e. for each "best chromosome" 

carried over a "worst chromosome" is deleted.
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Example

Fit function: f(x) = x1+2x2+3x3
Population:

(0,2,3); f = 13

(1,0,0); f = 1 (0,2,3) (0,8,3); f = 25

(0,8,1); f = 19 (0,8,1) (0,2,1); f = 17

crossover

(0,8,1); f = 19 (0,8,1) (0,2,1); f = 17

(1,1,0); f = 3
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GA vs traditional methods

� GAs search a population of points in parallel, not only 

a single point

� Gas use probabilistic transition rules, not 

deterministic ones

� Gas work on an encoding of the parameter set rather � Gas work on an encoding of the parameter set rather 

than the parameter set itself

� Gas do not require derivative information or other 

auxiliary knowledge - only the objective function and 

corresponding fitness levels influence search
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Hybrid approach

� Combines the advantage of global convergence properties of algorithms like GA 

and ASA and the property of  fast convergence of a gradient based methods like 

FLOPC

� First find a solution which is close enough to the global minimizer and refine the 

solution using locally convergent FLOPC method

initial guess x0
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Solution xG found by a 

global optimization algorithm

Solution x* found by a gradient based 

optimization algorithm  using xG as initial guess



Stochastic and Deterministic Optimization

� Stochastic Optimization arises when a model depends on 

unknown quantitis 

� Frequently unknown quantities can be predicted or estimated 

with some degree of confidence

� To formulate an optimization problem the uncertainties must � To formulate an optimization problem the uncertainties must 

be quantified (scenario identification, probability distribution)

� Quantification of uncertainties are used by stochastic 

optimization algorithms to optimize the expected 

performance of the model

� In deterministic optimization problems, the model is fully 

specified
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