Kinematics in HELIOS detector and particle
detection
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Transfer Reaction

The kinematics of transfer reaction, denote as A(a,b)B, where A is incoming particle with larger mass, a
is target nucleus, b and B are scattered particles, in which b is the lighter one.

The four-momenta vectors of particle b and B in the Lab frame are

Eb VEcm - ]/ﬁk cos Qcm Eb
P,=|pP: |=|VBEcm —vkcosO., | =(pcosbO

Pxy k sin 6, psinf

E' YEim + vBk cos 0.y, E' E L 3
Pg=| Pz |=| yBELy +ykcosbO,, | =|p cosb

Pxy —ksiné,,, p'sin@

’ﬂ" E{-‘ﬂl
where -
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E.pp= |m2+k?2=—(M?+mé—m3
cm b ZMC ( c b B) h
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El = /m§+k2 = (M2 —m2 +m3)
c

1
k? = W(MCZ — (myp + mp)?)(MZ — (m, — mp)?)
t

M? = (mg + my)? + 2m, Ty

_\/(mA+TA)2—mf1 1

ma+mA+TA 14 1_B2

In here g (G) is the total energy of particle b (B) in the CM frame, 8., is the center of mass scattering
angle. k is the momentum of particle b or B in the CM frame. E; is the total energy in the CM frame, or
the total invariance mass of the system M_. T is the total kinetic energy of particle A in the Lab frame.
is the Lorentz boost from the CM frame to the Lab frame, and y is the Lorentz parameter from (. The
momentum of the particle b, in term of lab angle 9, is:

Y
:M 2 2 202 2 2
P =T tierg (9B + K+ (= g?pPy 7 an?0),
sin @ 1 ksin6
tan 6., = p—, tanf = ———"
ﬁq—%cos@ Y Bg — k cos O,

Special case: the (d,p) reaction at low energy

In a (d,p) reaction, let’s make an approximation that my~A m,, m,~2m,, my~m,, mg~(A + 1)m,,
and T~A k m,,, where k is in MeV/m,,, for 10 MeV/u, k~ 0.01. The lab angle for the light particle
approximates to
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Figure 1 The relation between 6., and 0, ;, for simple approximate for the (d,p) reaction.

The 8,4, (or simply 8) is approximately 2 times than 8, for 6., < 20°.

HELIOSmatics
Using this four-momentum vector, we are going to give out the formula that use in HELIOS. The most

representation plot is the e — z plot (Figure 2), where the kinetic energy versus position along the HELIOS

axis. A typical plot like this:
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Figure 2 The black curve is the lower or upper bound of the energy or 8., = 0. The red line the locus for fixed
excitation energy (constant E, line). The blue line is the line for 6., = 7 /2, and the green curve is constant 6, or
T — Oy



The basic formula is the cyclotron radius

P

ST

where P is momentum in MeV/c that perpendicular to the magnetic field B (in Tesla), g is the charge
state, ¢ = 299.792458. the unit of p is meter. Under the kinematics of transfer reaction

_ Dxy ksinfp,
" cqB cqB

[meter]

The time for a cycle is

2np 2w ksinf,,,
t= = [sec]
v, «¢cqB v,

The time for a cycle is almost fixed. Thus, the length for a cycle is

Z=17||t=27'[pﬂ
vy
_27T'l7||k.9 U"_ 1
" cqBv, Sttt Vem v, tané
p

7Ttan 7]
21

:Cq_sz

We have

cqB
@72 =p; = YBEcm —vkCcosOem, @ =——

With the energy equation, we have 2 coupled equations (master coupled equations):
az=yBE., —ykcosb.,
Ep = YEcm — yBk cos Oy

By eliminating difference variables, we can get all difference curves or lines.

Cyclotron period

_ 2mp

=

_ 2w ksinOcpy

te

_CQ_B vy
2mrm

te=——
c chYL

The k sin(6,,) is same as the perpendicular component of the momentum in the Lab frame, i.e. py;,.
Pxy =P1L =MV,

Where y; is the Lab frame Lorentz gamma.



The constant E, line
First, by eliminating cos 8, in the master coupled equations, we get the red line in Figure 2, which only
depends on excitation energy

e= )C/m—mb—kaﬂz

_ MZ+mp—-mj cqB

¢ 2v M, 2
The intercept of the red line is

M2 + mé —m3

€o = 2/ M, —my

The only non-constant is mg, which can be excited. Let examine the term, for E,, <K mg

mg _ (mg+E)?  mp ( ZEx) ms_ ms
- = — =
2yMe — 2yMc 2yMc " mg/  2yMc yM:”
At small incident energy, M, = m, + mp + T¢yy ® mp, ¥y = 1,

_MZ+mp-mj

ey = —my — E
0 2yM, b *
Second, we can also eliminate e, so that,
cosf,, =—2 4
cm ) l

This is the center-of-mass-angle to z-position relationship. The dependency of the excitation energy is
inside the term E,,.

The constant 8., line
Next, we eliminate mg from the master coupled equations. Notice that mp is implicitly contained inside
k = k(mg), we have a complicated curve

—sin?(8,.) aBfy?z + cos O, \/azzz + mZ(1 —sin?(Ocp) ¥2)
1- Sinz(gcm) VZ

e=-—-my+

This is a general contour for a given 8.,,,. When 6,.,,, = 0, it reduces to

e=-my,+ /azz2 + m

This is the black curve in Figure 2. When 8,,,, = g,



e=-my,+-=z

This is the blue line in Figure 2.

The Bore radius line
Since the detector may have maximum radius R, and 2p < R. Thus,

ksinf., R ) cqB
p=Cq—BSE:ksm90=RT=Ran
Put in the 2 coupled equations:

az=YBEm —yVk?* — (Ram)?
e +mp = YEcm — YBV k* — (Ram)?

Expand in recoil mass mg,

1
K2 = oy (M2 = (my, + mp))(MZ = (my = mp)?)
c

1 1
az =y (MZ+mf —m}) —y J oz (M2 = (my, + M) (ME = (my = m)?) = (Ram)?
Cc c

1 1
e+my =y (MZ+mj—m3) —yB |—5 (M2 — (my + mp)?)(MZ — (m;, — mp)?) — (Ram)?
2E aM
t Cc

Eliminate mp

2mpe + e? = a?(n?R? + z?%)

e= Jaz(anZ +2z2) + mZ —m,

Compare with the constant 8.,,, = 0 line

e = /a222+m12,—ml2,

Maximum excitation energy
We can see that, when the excitation energy of particle B is higher, the red line shifts lower, there is an
upper limit for the red line to be shifted, which is when the red line touches the black curve.

YB
(emax: Zmax) = \MpY — mbr?mb

Solve for the maximum mg, in the CM frame,



mg(max) = my, + Ey(max) = M, —my, = \/(mg + my)? + 2m Ty — my,

At non-relativistic limit,

m,T, m,T,
a4 _mb:Q+mB+LA

mg(max) =/ (m, + my)2 +2m, T, —my, > m, + my + ————
B( ) \/( a A) alA b a A ma‘l'mA ma+mA

m
E,(max) = Q+————T4,=Q+T,,
ma+mA

where T, is the CM frame kinematics energy. In fact, it is easily to prove that

T, ="
M, +my 4
Minimum Incident energy
The minimum incident energy requires that k > 0, thus
2 1 2 2 2 2
k2 = oy (M2 = (my +mp)?)(ME — (), —mp)?) 2 0
Cc

The most minimum factor is

M? — (mp + mp)? =0
= M, =2 my + mp
= (ma + mA)Z +2m Thin = (mb + mB)Z

(mp + mp)? — (Mg + my)?
Tin =

2m,

E—Q(l+%)¢Q

a

We can divide the minimum incident energy by the mass number of particle A, replace my =
Am,, m, = am,, we have

Tmin " <a + A) _ Q
A ad ) min(a,A)

Tilted Reaction
When the incident particle makes some incident angle 8,4, the four-momentum of particle b will be tilted

by angle 8,
E 1 0 0 yg — yBk cos 6.,
P, = (pz ) = (0 cosf, —sin9A> yBg — vk cos 0.y,
Pxy 0 sinf, cosl, k sin 0.,
Since the z-position is
az=p, = BE; —vkcosO.y,)cosb, + ksin(6.,,) sinb,
With the energy

e+m=E.,, —yBkcosl.,



Eliminate 8.,,, we get

E 1
afz = (e +m-— %) cos B, + ]—/\/()/,B’k)2 — (E;p —e—m)?sinf,
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In the above plot, the orange line is the normal constant E, line, the green curve is 8, = 50 mrad, and
the red curve is 84 = —50 mrad. 50 mard ~ 2.9 deg. And the blue curve is with finite detector
correction, such that a = 0.01 meter. The reaction is 2°®Pb(d,p) at 10 MeV/u, magnetic field is 2.85 T.

In this calculation, we can see the finite emittance of the beam could contribute a lot to the energy
resolution.

Classical Limit
When the beam energy is small so that the relativistic effect is small, fc = V,,,,, the cyclotron period
becomes

. 2nm 2mtm
= —— - —
© ¢Bgq VL7 B q
The constant E,, line is
Ecm CqB Ecm chm
Ey = +—pfz->E, = z
b Y 2m A b te

The CM frame energy E.,,, & mc? + %muz. Divided by the Lorentz y, it becomes

E 1 1
= > me? + Emu2 —Echfn




Also, E, » mc? +e

MVem
tC

ez

1
mu? — Echfn +

N =

Alpha Source

When alpha source is put at the axis, the 4-momentum is

]P’=(E,pz,pxy), E=m,+T, p, =pcoso, p=+2m,T +T?

Under a magnetic field, the bending radius is

P

P b

where P is momentum in MeV/c that perpendicular to the magnetic field B (in T), g is the charge state,
¢ = 299.792458. The unit of p is meter

psinf
p=

cqB ’
The time for a cycle is

2np  2m psiné

t = =
v, c¢qB v,
Thus, the length for a cycle is
_ t=2 U” _ 21 17" ing = 21 0 7.7" _ 1
Z=nt= npvl_chvlpsm _CquCOS ’ v, tan@
B 21 p
Zy = cqB p cos

The locus is
sin (tan(@) % - (,‘b) + sin ¢
o (cos (tan(@) % — (,‘b) — cos ¢)

() =+

Where o = 4+1 when B-field is parallel with the z-axis for positive charged particle. 2 = —1 when the B-
field is anti-parallel.

The radius is

r=4x?>+y%= \/Ep\]l — cos (tan(@)%)

10



Finite axial detector

A finite axial detector is a polygonal prism that surrounded and centered the HELIOS axis and larger than
the beam size. The blue circle is the XY projection of the particle trajectory. The orange line is one of the
detector plans.

\4

For am axial detector, the normal of a plane is

fl = (cos ¢, ,sin¢,,0)
The equation for the detector plane is

xcos¢, +ysing, =a
Where a is the shortest distance from the plane to z-axis.

The equation of the locus of the positive charged particle, when the B-field is direct to the z-axis, is
z
sin (tan(@) ; - ¢) + sin ¢
z
o (cos (tan(@) ; — ¢) — cos ¢)

Where (8, ¢) is the scattering angle of positively charged particle b, g is the +1 for B-field along z-axis, -1
for B-field against z-axis.

Define A = ¢ — ¢, the hit points are
Znic = L(UA(# +nmr+ (—1)"sin~?! (E — asin(Aqb))) n=20,1,2
hE ™ tan(6) o ’ B
For real solution,

a
-1< ;— osin(A¢) <1

11



Notice that the length for a cycle is

_2mp
“= tan(0)

Znit = 5—; (aAd) +nm + (—=1)"sin™! (g -0 sin(Ad))))

Since we want to know which point is hit from outside, i.e. the direction of the particle is toward the
axis, not outward from the axis.

The direction vector for the particle is
g z
d (x) o cos (tan( );— ad))
E y - ,D an( ) . VA
o sin (tan(@) ; — ad))

The dot product with the plane normal

Z
cos 8’ = ptan(0) cos (tan(@)l—) — aAqb) <0

= cos (tan(@) % — aAqb) <0

In fact, using geometrical argument, for n = odd number, the hit point is always inward. Substitute z;;

cos (nn + (—1)"sin™? (% -0 sin(A¢)>>
= (—1)"cos (sin‘1 (% —0 Sin(AQb)))

= (—1)11\/1 — (% — crsin(Aqib))2 <0

This proves the geometrical argument that n = odd.

A special case for ¢ = 0, q,’)p =m,n=1

Zpit = %(27‘[ —sin™t (g))
i3 )

The rotated angle is smaller then 2. When p > a

With the transfer reaction, when e is large, p > a, and the sin™1() becomes small. Express p and z,

12



_ksincp, E.m

p= CqB ) aﬂZO = Eb -
Since
E, =yE.m — )/ﬁk cos O,
1
= cosOcy = Y’Tk(yEcm - Eb)
Thus,
. _ \/yzﬂzkz - (VEcm - Eb)z
ksin@,, =
YB
Than we have,
E aa
a,/)’zz(Eb— cm)(l_ By
)4 \/VZ,BZkz - (yEcm - Eb)z
208Pb(d.p) @ 8 MeV/u
14~v'1-'1'l||-|-'|'||
121
10+ h
= BE
b
o

Off-axis Effect
When the helix of particle b is off axis.

sin (tan(@) % + ¢) —sing

5)s o

cos ¢ — cos (tan(@)g + (]5)

The solution for z;; becomes

cos ¢
sin ¢

)

)

13



a—po C05(¢0 - ¢p)
p

M tan(9)

<¢p —¢+nm+ (=1"sin™ < + sin(¢ — ¢p)>>,n =012...

Forn = 1,¢>p =m,¢=0

1 ., (a+pocos(do)
Zpit = Zo 1—%sm f )

a + po cos(¢o)
p

<1

We can see, the effect is same as change of the effective a.rr = a — pg cos((,bo - qbp). Also the beam
size must be smaller than the detector distance p > a > p cos((,bo - qbp).

Radial Detector (no conclusion yet)

A radial detector is a plane detector located at fixed z-pos (zz) and perpendicular to HELIOS axis. The hit
position with an off-axis helix is

. sin (tan(9) %R + (;b) —sin¢ cos ¢y
(y) —p s o (tan(e)zf N ¢) + po (Sin ¢0)

For py = 0, the radial position is

z
r=.x%+y? =p\/2—2cos(tan(9)f)

k sin 6 tan(0) z cZB
Pxy _ cm tan9=pﬂ, (6) R _ 2

“ZB cZB ' Dy p Dy

p

Since the z-pos is fixed, the TOF from target to the detector is

. zg zZp E
vZ c pZ
Eliminate the k cos 8., in p,, we have
E ct
e+m=—"
y PBzg—ct

Knockout reaction

The reaction is notated as A(a, 12)B, where A =B + b, in which b is the bounded nucleus, and 1 and 2 are
free scattering particles. When particle b knocked out, it becomes particle 2. The energy and
momentum conservation are

]P)A+]P)a=]P)1+]P)2+]P)B

14



In which the mass of particle B is
mp+my, =my+S
The reaction Q-value is
Q=my+mg—my —my, —mg =-S5

The recoil of the particle B assumed the form

Py = (ms, —E) = <\/(mA —my +S5)*+ |k—b)| 2,—E>

Where S is separation energy, k is the recoiled momentum, which is same but opposite direction with
the bounded nucleus b, as particle A is stationary.

Assume a is the incident particle and A is the target, We can from a quai-particle b by

2 —
:kb>

Thus, the rest is like that of transfer reaction, except the target is also moving.

]P)b:]P)A_]P)B

P, = (mb,ﬁb) = (mA —\/(mA —mg+85)?+ |k_b)

Because the “target” b and incident particle a are both moving, this forms the plane of incident channel.
And the exit channel, particles 1 and 2 cannot be on the same plane. The following illustration is normal
kinematics.

Before Scattering

[ a
(A3,12)8 — ©
A=B+b

a=>1

b>2

Nucleon-Nucleon C.M. Frame

e

Onn
. Ty,6,, ¢, /
scattered
s ;ro{on o \ o //\ o

After Scattering

Knockout

proton /
O r.o.0, kg = —ky

15



Once the quasi-particle is constructed, the reaction is reduced to
]P)a + ]P)b = ]P)l + PZ
Thus, the next step of calculation is identical to transfer reaction. The reaction constants are

ko +kp 1

—' ’y S —
Eq +Ep J1- 18P

2
|

B_):

Et=\/(Ea+Eb)2+IE+k_b’
1

k2 = 2 (B = (my + mp)?) (B} = (my —m2)?)
t

in above, E is the Lorentz boost to NN-CM frame. E; is the total energy in NN-CM frame, or the intrinsic
total energy of NN-system. k is the magnitude of momentum of the scattered particles 1 and 2 in NN-
CM frame.

Since the Lorentz boost of from the Lab frame to the NN-CM (nucleon-nucleon center of mass) frame is
not on the z-axis, the formula for particles 1 and 2 is complicated. In the NN-CM frame, the four-vector

for particle 1 is
E ’mf + k?
Pl =| Pz =

B k cos@

p
il ksin@

Where 6 is not the CM frame scattering angle, because the particle a could has some finite polar angle.

Inverse Kinematics

In inverse kinematics, the momentum E = 0, that simplify the calculation that, the reaction is a tilted
transfer reaction, i.e. the reaction axis is not on the z-axis.

Reconstruct scattered four-momentum
In the knockout experiment, we needed to reconstruct the four momenta. Under HELIOS, to problem is
converting zp;; to 8;, the lab angle.

Inverse Problem

We show that the solution from CM frame to Lab frame, or from theory to experiment. Basically, the
HELIOS is a problem of finding the mapping

16



In term of E, and cos 0,
We can express (z, e) in term of (Ey, 6.,) as

T 2M\ B(M2 + m2 — (M + Ex)?) — €08 Oep A/ (MZ — (m + M + Ex)2)(MZ — (m — M — Ey)?)

(e) 14 <Mc2 +mf — (mp + Ex)* — B oS O/ (MZ — (m + mp + E,)?)(MZ — (m — M — Ex)z))
Z

The inverse

E —mp + \/MCZ +m2 — 2yM.(E, — aPz)
x —
(cos GCm> B Y(EpB —az)
(2@ - ap2? - m}

Get k and 8., from e and z
From experiment, we get the energy (y = E}, = e + m) and position (z), then we can reconstruct the
reaction constant k and 6.,,.

k? =y*(y — Baz)* — m?

0 - (az—By) yvm?+k?—y
CoOSUOym = ]/k = )/ﬁk

From k?, the total mass of the particle B is

m3 =mi + MZ — 2M, ’k2+m12,

Where M, is the total mass of the system.

Finite detector
The coupled solution is

y=e+m=yym?+k?—yBkcosb.,

ksinf., ksinf,,

p= cqB - 2na
1
afyz = (yy —ym? + k2) (1 — %g)

Solve cos @ from 1% equation, and sub into 2" equation,

17



Byaa
\/Zyyx/m —y?—m?y? —k?

afyz = (yy— m2 +k2) 1-—

Use
s
k - mtan(x), O<x<§

Braa

= - 1-
apyz = (yy — msec(x)) ( J2yymsec(x) — yZ — m*y? — m? tan?(x)

Under the square root,

2yymsec(x) — y2 — m?y? — m? sec?(x) + m?
= —y?y? + 2yym sec(x) — m? sec?(x) + y?y? — y? — m2y? + m?
=—(y—-m sec(x))2 + (yz - mz)yzﬁz

Than

Byaa )

= (yy — 1-
apyz = (yy — msec(x)) < JO? —m2)y?p2 — (yy — msec(x))?
Replace

yy —msec(x) > K
(y? —m?)y?p? > H?> >0

apyz = Z
Byaa - G >0
G
Z=K<1——)
H? — K?
Next, replace
K - Hsing, —5<¢<3

or

The momentum square is
k? = (yEzy — Hsin¢)? —m?
Whena - 0,6 -0

Z =Hsing = K = yy — msec(x)
N aﬁyz:]/y— m2+k2

)

18



1
-y = }—/\/mz + k%2 + apz
Or
k* =y*(y — aBz)* — m?

Return to the infinite detector solution.

a

HZ—KZ  2mp <1

Since H,G > 0, and G < H, as the term

The function

f(¢p) =Hsing — G tan ¢
Looks like this

=

[=]
[=]
[=]
[=]
]

(=]
T

Where the orange line is the f(¢) and the blue line is f(¢p) = Z. We can see, there are multi-solution
for ¢. Normally, when 8., > 0, the derivative is

f'(p) =Hcos¢p —Gsec’¢p >0
From experience (need proof), f'(¢) > 0 is the correct solution for most of the case.

Only when the 8., is too small, so that the e-z line bended so much. In the following plot, the E,. €
(0,15) MeV, 0., € (0°,60°). There is region where double solution exists, in that case, at the boundary
that manifold is folded, the proper solution takes f'(¢) < 0,¢ Z > 0.

19



208PDb(d.p) @ 8 MeV/u

T T T
14 |
i 5o
10+ )
= 8t
o
©
o b6FfF
4l
2 Sl Pt
¢ . sy | vl
T e — ==
B e
O . — ——

-400 =200 0 200 400 600

It seems (Need proof) that the fold happens when
Vzﬁzkz — (VEem — y)z =0
To numerically find the solution, a newton’s method is adequacy.

_ . f¢)
¢i+1 - ¢l f’(¢1)

Appendix

Lorentz Transform with boost ﬁ

]P’=(€)—>[P”=< YE+ypB -k >=( yE+yﬁk€056 )
VEB+k+(y—1)(B-k)B (yBE + vk cos 0)f + ksin6 A

where 8 L A,

Kinematics of 2-body scattering
Suppose the reaction is labeled as b(a,1)2, where a=> 1, b—>2 after scattering. The four momenta of the

incident channel are
’ 2 2
+k m
[P)a — ma a , ]Pb — ( _)b)

—

Ka

The center of mass 4-vector is
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2 k2 E
P, =P, +P, =™t Kkatm :<i>

—

kq

The system mass is M, = E? — k2 = \/m,zl + mé + 2my,\/mZ + k2

The Lorentz boost vector is

.k, E, .k,
ﬁ =T Y =7 YB =T
E; M, M,
The system undergoes a Lorentz boot, so that the total momentum from 0 to E = yEMC, to see that, in
the CM frame,
P. = ()/Ec_yﬂ'ka> _ (Mc)
c — - —_— - g
_V.BEC + yka 0
where
N k2 vy
YEc —vB - ko =VE. _VE_a = E_(Mcz) =M,
Cc Cc
In CM frame,
24 k2 —yB kg
Y. [Ma a~ VY a ymy
]P), = , ]P), = ( - )
“ > b —yBmy

—yB |m2 + k2 + vk,

y,’mczl+k§_yﬂ'ka+ymb=yEc_yﬂ'ka=Mc

Check the energy part

The momentum part
—YB |m& + k& +vka —vBmy = YBE. +vky =0

After the scattering, only direction changed.

1
p* = A2 (MZ — (my + my)?)(ME — (my — my)?)
c

The 4-momenta

Return to the Lab frame
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/ V/m%+p2—)/ﬁ~ﬁ

/ V/m%+p2+yﬁ-ﬁ
11»’1:\

Vo \
v m%+pzﬁ+ﬁ+(y—1)(3'ﬁ)3/ \V m%+p2/§—ﬁ—(y—1)(/?-ﬁ)/?/

The momentum part can be rewritten using - = p cos @

y /mf+p2+yﬁpc059 y /m§+p2—yﬁpc059

]PJ'1= ,]P"2=
<yﬁ mf+p2+ypc059>ﬁ’+psin9 l <yﬁ m3 + p? —ypcos@)ﬁ—psin@ al

where § 1 A.

The total energy must be conserved,

E1+E2=y\/mf+p2+y\/m§+p2=Jm¢21+k,§+mb

The opening angle

kik, cos 0y, = <yﬂ m? + p2 + yp cos 9) <y[)’ m3 + p2 — yp cos 9) — p?sin? 6

Assume the masses of 1,2 are equal the masses of a, b
After the scattering, only direction changed. Also, we can check the momentum formula

1 ?
p? = (ME = (mg +my)?)(ME — (mg —my)?) > y?B2m}
c

Each term,
M2 — (mg + mp)? = m2 + m& + 2my, [m2 + k2 — (mg + mp,)? = 2m,, fm?l + kZ —2m,m,

MZ — (mg — mp)? = m2 + mZ + 2my, [m2 + k2 — (mg — my,)? = 2m,, /mczl + k2 + 2m m,

1 2
p? = — (4mi(mZ + k2) — 4mZm) = m —% = y2p?m}
g v

Assume the mass of a and b are the same
Suppose the massesm, = m, =m =m; =m,
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/y m2+k§—yﬁ'z\ ) ym
! w2

P, = = >
“ " P —yBm
_V.B me + ka + Vka
MZ
p? = Tc_mz = y2B2m? = M2 = 4(y2B% + 1)m? = 4y?m?

M, =2ym

As we expected, as the particle a and b should share equal energy in CM frame, i.e.

y m?+ 12—y kg =ym
2
m? = <y /m2+k§—)/[3-ka> —y*p*m?

The scattered 4-momenta in CM frame are

p=("2)  m=(5)

Which can be obtained using

In Lab frame,
p _< y*m+yf - p > p _( y*m—yf - p >
1= = - A NA ]’ 2 — pd N A L\ A
v pm+p+ @ - D(B-p)B v pm—p - —D(B BB
The momentum part can be rewritten using f - = p cosf = yffm cos
y2fm+p+ (- 1D(B - B)B = (¥*Bm +ypcos6)B + psin6 7
Where § 1 1.

P = y2m(1 + % cos ) p. — y2m(1 — % cos )
P \y2Bm(1 + cos @) + psind A)° 27 \y2Bm(1 — cos@)f —psinb A

When scattering angle 8 = 0

y*m(1+ B?) m
Pl:( 2y?m f ) P = (o)

Check:

YV'm(A+p)=y’m+@? -1)m=2y>m-m=yM,—-m=E,—m = /m2+k§

2y2mf =2 mk—>—a=k_)
)4 14 M, a

The total energy or energy conservation,
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E; +E, =y?>m(1+ p%cos8) +y?m(1 — B?cosO) = 2y*m = E,
The opening angle

ki k, cos 61, = y*B*m? sin? @

Assume the mass of 1 and 2 becomes equal after scattering
Suppose the mass becomes m, the momentum is

M2 1
p2=T—m2=Z m2 +m2 + 2my, |m2 + k2 — 4m?

M, M,
Pi=|2 | Py=|2
p -p
M M
—y26+yﬂpc059 —yzc—VﬁPCOSH
P, = ) P, =
! YBM, 5 s 2 YBM, 5 s
T+ypcos€ p+psinfn T—ypcos@ [ —psinfn
Opening angle
25242
ki k,cos6;, = y'biTC —¥2B%p? cos? 6 — p?
2 ZMZ 2 2M2 MZ
=yﬁ C_}/ZBZPZCOSZH_p2=YB C__C_|_m2 y2ﬂ2p2c0529

Non-relativistic Transfer reaction
The reaction in the Lab frame is A(a,b)B, the velocity in the Lab frame is donated by v, in the CM frame,

the velocity denotes by u.
meg, Vg / \
CM Frame

Mg, Up

:“‘.]‘ .'.'i".i("_} ”[.J,uu
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2
The velocity of particle A and the kinetic energy E, is related by E4 = %, orvy =./2E,/my. The

velocity of the CM (center-of-mass) frame is

my N 2myEy

= Vy =
my + mg my + mg

Vem
The particle’s velocities in the CM frame are

Up =Vy — Vo = Vem

mg
my
Uy =V = Vem = —Vem

The total momentum
myuy + maug =0
The total kinetic energy in the CM frame

1 1 1m 1 mymy
Tom = smaui + smau2 = =—(my + my )V, = c————vi = ————
cm T g ATA T ata ZmA( A a)Vem 2mg +my © my+mg

Mg
Ey

After scattering, the balance of energy and momentum are

1 1
Embu§+§m3u§ =T.m + 0, Q=my+my,—my—mg

mpu, + mpug =0

The solution for the particle velocities is

Move back to the Lab frame,

— (—ub cos O.p, + ch) — (uB cos O,y + ch>
v , Vg =

—Uup, sin 6, ug sinf.,,

Let’s focus on the light particle form now on, it carries charge Z and moves in a magnetic field strength
B in the z-direction. The distance in the z-direction after time ¢t is

z
— = —u,cosO., + Vo
tc
The kinetic energy is
1
Ep = Emb (uIZJ + Vc%n — 2upVem cos ecm)

Eliminate 6., both equations, we have

1 1 mpVoem
Ep = smpup — smpVi, +
b Zmbub Zmb cm t,
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The excitation energy of particle B is implicitly in u;, and all other coefficients are fixed.
The kinetic energy of particle b in CM frame is

1 m + T, m,+m
Tb =m, ulz) — B(Q cm) — Q +Tcm — b BTb
my + mg mg

Thus, the Ex-spectrum of particle B is, substitute Q —» Q, — E.

my + mg
x:QO+Tcm_—(

1 mpV,
Eb + _meC%n - b CmZ)

B 2 te

Projection of Ex for different reactions with same light particle charge state

Suppose we have A(p,d), A(d,d) and A(d,t) reactions happened all at the same experiment, Since the
charge states of all light recoil are the same, and the slope of the e-z plot only depends on the charge

state, so that all reactions will have same slope and all reaction can be projected.

The classical limit is

1 2
—Emecm+nz. n= r

Eb - Tb
And the Q-value

my + mpg

mg b cm

The excitation energy in inside the Q-value, substitute Q = Q, — E,

my + mp

— =— T —T
QO x mg b cm

my + mpg
Ex=Qo+Tem———Tp

mp
my +mg my, +mpmy
Ex=F_m—B(Eb_nZ)' F=0Qo+Tm— TmBVc?n

We can see, the projection E;, — 1z need a scaling factor (m;,, + mg)/mg to give the correct scale. And

there are a few additional terms to do the offset.

For mass of particle-A is larger than deuteron and fixed beam energy, the term

\/ AEA vV 2E4/my

= const.
Vem my+m, 1+ ma/mA
Ton = —E —E
M my+m, A omy A
So, the offset factor approximately equal to
2
mg —my)mg —m
F~ QO +( a b) B bEA

mymp
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Replace all mass with mass number times the nucleon mass m,, and simplify,

N (a — b)B — b? £
AB A
For the A(p,p), A(p,d), A(d,p), A(d,d) and A(d,t) reactions,

F=Q

1
F(p,p) = _EEA

Fp,d) = Qo(p, d) — — o~ Eq
1
F(dp) = Qoldp) + 5 Ex
4
F(d,d)z—EEA , .
+
F(d, t) ~ QO(dJ t) - AB EA

They have different offsets.
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