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Transfer Reaction 
The kinematics of transfer reaction, denote as A(a,b)B, where A is incoming particle with larger mass, a 

is target nucleus, b and B are scattered particles, in which b is the lighter one. 

The four-momenta vectors of particle b and B in the Lab frame are 

ℙ𝑏 = (

𝐸𝑏
𝑝𝑧
𝑝𝑥𝑦
) = (

𝛾𝐸𝑐𝑚 − 𝛾𝛽𝑘 cos 𝜃𝑐𝑚
𝛾𝛽𝐸𝑐𝑚 − 𝛾𝑘 cos𝜃𝑐𝑚

𝑘 sin𝜃𝑐𝑚

) = (

𝐸𝑏
𝑝 cos 𝜃
𝑝 sin 𝜃

) 

ℙ𝐵 = (

𝐸′

𝑝𝑧
′

𝑝𝑥𝑦
′
) = (

𝛾𝐸𝑐𝑚
′ + 𝛾𝛽𝑘 cos𝜃𝑐𝑚

𝛾𝛽𝐸𝑐𝑚
′ + 𝛾𝑘 cos𝜃𝑐𝑚
−𝑘 sin 𝜃𝑐𝑚

) = (
𝐸′

𝑝′ cos 𝜃

𝑝′ sin 𝜃
) 

where 

𝐸𝑐𝑚 = √𝑚𝑏
2 + 𝑘2 =

1

2𝑀𝑐
(𝑀𝑐

2 +𝑚𝑏
2 −𝑚𝐵

2) 

𝐸𝑐𝑚
′ = √𝑚𝐵

2 + 𝑘2 =
1

2𝑀𝑐
(𝑀𝑐

2 −𝑚𝑏
2 +𝑚𝐵

2) 

𝑘2 =
1

4𝐸𝑡
2
(𝑀𝑐

2 − (𝑚𝑏 +𝑚𝐵)
2)(𝑀𝑐

2 − (𝑚𝑏 −𝑚𝐵)
2) 

𝑀𝑐
2 = (𝑚𝑎 +𝑚𝐴)

2 + 2𝑚𝑎𝑇𝐴 

𝛽 =
√(𝑚𝐴 + 𝑇𝐴)

2 −𝑚𝐴
2

𝑚𝑎 +𝑚𝐴 + 𝑇𝐴
, 𝛾 =

1

√1 − 𝛽2
 

In here 𝑔 (𝐺) is the total energy of particle b (B) in the CM frame, 𝜃𝑐𝑚 is the center of mass scattering 

angle. 𝑘 is the momentum of particle b or B in the CM frame. 𝐸𝑡 is the total energy in the CM frame, or 

the total invariance mass of the system 𝑀𝑐. 𝑇 is the total kinetic energy of particle A in the Lab frame. 𝛽 

is the Lorentz boost from the CM frame to the Lab frame, and 𝛾 is the Lorentz parameter from 𝛽. The 

momentum of the particle b, in term of lab angle 𝜃, is: 

𝑝 =

𝛾
cos 𝜃

1 + 𝛾2 tan2 𝜃
(𝑔𝛽 + √𝑘2 + (𝑘2 − 𝑔2𝛽2)𝛾2 tan2 𝜃), 

tan 𝜃𝑐𝑚 =
𝑝 sin𝜃

𝛽𝑞 −
𝑝
𝛾 cos 𝜃

, tan 𝜃 =
1

𝛾

𝑘 sin 𝜃𝑐𝑚
𝛽𝑔 − 𝑘 cos 𝜃𝑐𝑚

 

Special case: the (d,p) reaction at low energy 
In a (d,p) reaction, let’s make an approximation that 𝑚𝐴~𝐴 𝑚𝑢,𝑚𝑎~2𝑚𝑢,𝑚𝑏~𝑚𝑢,𝑚𝐵~(𝐴 + 1)𝑚𝑢, 

and 𝑇~𝐴 𝜅 𝑚𝑢, where 𝜅 is in MeV/𝑚𝑢, for 10 MeV/u, 𝜅~ 0.01. The lab angle for the light particle 

approximates to  
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tan 𝜃 ~
sin 𝜃𝑐𝑚

√2𝐴

√1 + 𝐴
− cos 𝜃𝑐𝑚

→
sin 𝜃𝑐𝑚

√2 − cos 𝜃𝑐𝑚
, 𝑤ℎ𝑒𝑛 𝜅 → 0 

         

 

Figure 1 The relation between 𝜃𝑐𝑚 and 𝜃𝐿𝑎𝑏 for simple approximate for the (d,p) reaction. 

The 𝜃𝐿𝑎𝑏 (or simply 𝜃) is approximately 2 times than 𝜃𝑐𝑚 for 𝜃𝑐𝑚 < 20° .  

 

HELIOSmatics 
Using this four-momentum vector, we are going to give out the formula that use in HELIOS. The most 

representation plot is the e – z plot (Figure 2), where the kinetic energy versus position along the HELIOS 

axis. A typical plot like this: 

 

Figure 2 The black curve is the lower or upper bound of the energy or 𝜃𝑐𝑚 = 0. The red line the locus for fixed 
excitation energy (constant 𝐸𝑥  line). The blue line is the line for 𝜃𝑐𝑚 = 𝜋/2, and the green curve is constant 𝜃𝑐𝑚 or 

𝜋 − 𝜃𝑐𝑚. 
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The basic formula is the cyclotron radius 

𝜌 =
𝑃

𝑐𝑞𝐵
, 

where 𝑃 is momentum in MeV/c that perpendicular to the magnetic field 𝐵 (in Tesla), 𝑞 is the charge 

state, 𝑐 = 299.792458. the unit of 𝜌 is meter. Under the kinematics of transfer reaction  

𝜌 =
𝑝𝑥𝑦

𝑐𝑞𝐵
=
𝑘 sin 𝜃𝑐𝑚
𝑐𝑞𝐵

 [𝑚𝑒𝑡𝑒𝑟] 

The time for a cycle is  

𝑡 =
2𝜋𝜌

𝑣⊥
=
2𝜋

𝑐𝑞𝐵

𝑘 sin𝜃𝑐𝑚
𝑣⊥

 [𝑠𝑒𝑐] 

The time for a cycle is almost fixed. Thus, the length for a cycle is  

𝑧 = 𝑣∥𝑡 = 2𝜋𝜌
𝑣∥
𝑣⊥

 

      =
2𝜋

𝑐𝑞𝐵

𝑣∥
𝑣⊥
𝑘 sin 𝜃𝑐𝑚 ,

𝑣∥
𝑣⊥
=

1

tan 𝜃
 

      = 2𝜋
𝜌

tan𝜃
 

      =
2𝜋

𝑐𝑞𝐵
𝑝𝑧 

We have 

𝛼 𝑧 = 𝑝𝑧 = 𝛾𝛽𝐸𝑐𝑚 − 𝛾𝑘 cos 𝜃𝑐𝑚 , 𝛼 =
𝑐𝑞𝐵

2𝜋
 

With the energy equation, we have 2 coupled equations (master coupled equations): 

𝛼 𝑧 = 𝛾𝛽𝐸𝑐𝑚 − 𝛾𝑘 cos 𝜃𝑐𝑚 

𝐸𝑏 = 𝛾𝐸𝑐𝑚 − 𝛾𝛽𝑘 cos𝜃𝑐𝑚 

By eliminating difference variables, we can get all difference curves or lines.  

Cyclotron period 

𝑡𝑐 =
2𝜋𝜌

𝑣⊥
 

   =
2𝜋

𝑐𝑞𝐵

𝑘 sin𝜃𝑐𝑚
𝑣⊥

 

𝑡𝑐 =
2𝜋

𝑐𝐵

𝑚

𝑞
𝛾𝐿  

The 𝑘 sin(𝜃𝑐𝑚) is same as the perpendicular component of the momentum in the Lab frame, i.e. 𝑝𝑥𝑦.  

𝑝𝑥𝑦 = 𝑝⊥ = 𝑚𝑣⊥𝛾𝐿 

Where 𝛾𝐿 is the Lab frame Lorentz gamma.  
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The constant 𝐸𝑥  line 
First, by eliminating cos 𝜃𝑐𝑚 in the master coupled equations, we get the red line in Figure 2, which only 

depends on excitation energy 

𝑒 =
𝐸𝑐𝑚
𝛾
−𝑚𝑏 + 𝛼𝛽𝑧 

𝑒 =
𝑀𝑐
2 +𝑚𝑏

2 −𝑚𝐵
2

2𝛾𝑀𝑐
−𝑚𝑏 +

𝑐𝑞𝐵

2𝜋
𝛽𝑧 

The intercept of the red line is 

𝑒0 =
𝑀𝑐
2 +𝑚𝑏

2 −𝑚𝐵
2

2𝛾𝑀𝑐
−𝑚𝑏 

The only non-constant is 𝑚𝐵, which can be excited. Let examine the term, for 𝐸𝑥 ≪ 𝑚𝐵  

𝑚𝐵
2

2𝛾𝑀𝑐
→
(𝑚𝐵 + 𝐸𝑥)

2

2𝛾𝑀𝑐
≈
𝑚𝐵
2

2𝛾𝑀𝑐
(1 +

2𝐸𝑥
𝑚𝐵
) =

𝑚𝐵
2

2𝛾𝑀𝑐
+
𝑚𝐵
𝛾𝑀𝑐

𝐸𝑥  

At small incident energy, 𝑀𝑐 = 𝑚𝑏 +𝑚𝐵 + 𝑇𝑐𝑚 ≈ 𝑚𝐵, 𝛾 ≈ 1,  

𝑒0 ≈
𝑀𝑐
2 +𝑚𝑏

2 −𝑚𝐵
2

2𝛾𝑀𝑐
−𝑚𝑏 − 𝐸𝑥  

Second, we can also eliminate 𝑒, so that,  

cos 𝜃𝑐𝑚 =
𝛽𝐸𝑐𝑚
𝑘

−
𝛼

𝛾𝑘
𝑧 

This is the center-of-mass-angle to z-position relationship. The dependency of the excitation energy is 

inside the term 𝐸𝑐𝑚. 

 

The constant 𝜃𝑐𝑚 line 
Next, we eliminate 𝑚𝐵 from the master coupled equations. Notice that 𝑚𝐵 is implicitly contained inside 

𝑘 = 𝑘(𝑚𝐵), we have a complicated curve 

𝑒 = −𝑚𝑏 +
−sin2(𝜃𝑐𝑚)𝛼𝛽𝛾

2𝑧 + cos𝜃𝑐𝑚√𝛼
2𝑧2 +𝑚𝑏

2(1 − sin2(𝜃𝑐𝑚) 𝛾
2)

1 − sin2(𝜃𝑐𝑚) 𝛾
2

 

This is a general contour for a given 𝜃𝑐𝑚. When 𝜃𝑐𝑚 = 0, it reduces to 

𝑒 = −𝑚𝑏 +√𝛼
2𝑧2 +𝑚𝑏

2 

This is the black curve in Figure 2. When 𝜃𝑐𝑚 =
𝜋

2
, 
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𝑒 = −𝑚𝑏 +
𝛼

𝛽
𝑧 

This is the blue line in Figure 2. 

 

The Bore radius line 
Since the detector may have maximum radius 𝑅, and 2𝜌 ≤ 𝑅. Thus, 

𝜌 =
𝑘 sin𝜃𝑐𝑚
𝑐𝑞𝐵

≤
𝑅

2
⇒ 𝑘 sin𝜃0 = 𝑅

𝑐𝑞𝐵

2
= 𝑅𝛼𝜋 

Put in the 2 coupled equations: 

𝛼 𝑧 = 𝛾𝛽𝐸𝑐𝑚 − 𝛾√𝑘
2 − (𝑅𝛼𝜋)2 

𝑒 + 𝑚𝑏 = 𝛾𝐸𝑐𝑚 − 𝛾𝛽√𝑘
2 − (𝑅𝛼𝜋)2 

Expand in recoil mass 𝑚𝐵,  

𝑘2 =
1

4𝑀𝑐
2
(𝑀𝑐

2 − (𝑚𝑏 +𝑚𝐵)
2)(𝑀𝑐

2 − (𝑚𝑏 −𝑚𝐵)
2) 

𝛼 𝑧 = 𝛾𝛽
1

2𝑀𝑐
(𝑀𝑐

2 +𝑚𝑏
2 −𝑚𝐵

2) − 𝛾√
1

4𝑀𝑐
2
(𝑀𝑐

2 − (𝑚𝑏 +𝑚𝐵)
2)(𝑀𝑐

2 − (𝑚𝑏 −𝑚𝐵)
2) − (𝑅𝛼𝜋)2 

𝑒 + 𝑚𝑏 = 𝛾
1

2𝐸𝑡
(𝑀𝑐

2 +𝑚𝑏
2 −𝑚𝐵

2) − 𝛾𝛽√
1

4𝑀𝑐
2
(𝑀𝑐

2 − (𝑚𝑏 +𝑚𝐵)
2)(𝑀𝑐

2 − (𝑚𝑏 −𝑚𝐵)
2) − (𝑅𝛼𝜋)2 

Eliminate 𝑚𝐵 

2𝑚𝑏𝑒 + 𝑒
2 = 𝛼2(𝜋2𝑅2 + 𝑧2) 

𝑒 = √𝛼2(𝜋2𝑅2 + 𝑧2) + 𝑚𝑏
2 −𝑚𝑏 

Compare with the constant 𝜃𝑐𝑚 = 0 line 

𝑒 = √𝛼2𝑧2 +𝑚𝑏
2 −𝑚𝑏

2 

 

Maximum excitation energy 
We can see that, when the excitation energy of particle B is higher, the red line shifts lower, there is an 

upper limit for the red line to be shifted, which is when the red line touches the black curve.  

(𝑒𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥) = (𝑚𝑏𝛾 −𝑚𝑏 ,
𝛾𝛽

𝛼
𝑚𝑏) 

Solve for the maximum 𝑚𝐵, in the CM frame,  
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𝑚𝐵(max) = 𝑚𝑏 + 𝐸𝑥(max) = 𝑀𝑐 −𝑚𝑏 = √(𝑚𝑎 +𝑚𝐴)
2 + 2𝑚𝑎𝑇𝐴 −𝑚𝑏 

At non-relativistic limit, 

𝑚𝐵(max) = √(𝑚𝑎 +𝑚𝐴)2 + 2𝑚𝑎𝑇𝐴 −𝑚𝑏 → 𝑚𝑎 +𝑚𝐴 +
𝑚𝑎𝑇𝐴

𝑚𝑎 +𝑚𝐴
−𝑚𝑏 = 𝑄 +𝑚𝐵 +

𝑚𝑎𝑇𝐴
𝑚𝑎 +𝑚𝐴

 

𝐸𝑥(max) = 𝑄 +
𝑚𝑎

𝑚𝑎 + 𝑚𝐴
𝑇𝐴 = 𝑄 + 𝑇𝑐𝑚 

where 𝑇𝑐𝑚 is the CM frame kinematics energy. In fact, it is easily to prove that  

𝑇𝑐𝑚 =
𝑚𝑎

𝑚𝑎 +𝑚𝐴
𝑇𝐴 

Minimum Incident energy 
The minimum incident energy requires that 𝑘 ≥ 0, thus 

𝑘2 =
1

4𝑀𝑐
2
(𝑀𝑐

2 − (𝑚𝑏 +𝑚𝐵)
2)(𝑀𝑐

2 − (𝑚𝑏 −𝑚𝐵)
2) ≥ 0 

The most minimum factor is 

                 𝑀𝑐
2 − (𝑚𝑏 +𝑚𝐵)

2 ≥ 0 

⇒                                          𝑀𝑐 ≥ 𝑚𝑏 +𝑚𝐵 
⇒ (𝑚𝑎 +𝑚𝐴)

2 + 2𝑚𝑎𝑇𝑚𝑖𝑛 = (𝑚𝑏 +𝑚𝐵)
2  

𝑇𝑚𝑖𝑛 =
(𝑚𝑏 +𝑚𝐵)

2 − (𝑚𝑎 +𝑚𝐴)
2

2𝑚𝑎
 

           ≅ −𝑄 (1 +
𝑚𝐴
𝑚𝑎
) ≠ 𝑄 

We can divide the minimum incident energy by the mass number of particle A, replace 𝑚𝐴 ≈

𝐴 𝑚𝑢,𝑚𝑎 ≈ 𝑎 𝑚𝑢, we have 

𝑇𝑚𝑖𝑛
𝐴

≅  −𝑄 (
𝑎 + 𝐴

𝑎𝐴
) = −

𝑄

min (𝑎, 𝐴)
 

Tilted Reaction 
When the incident particle makes some incident angle 𝜃𝐴, the four-momentum of particle b will be tilted 

by angle 𝜃𝐴, 

ℙ𝑏 = (

𝐸
𝑝𝑧
𝑝𝑥𝑦
) = (

1 0 0
0 cos 𝜃𝐴 −sin𝜃𝐴
0 sin 𝜃𝐴 cos 𝜃𝐴

)(

𝛾𝑔 − 𝛾𝛽𝑘 cos𝜃𝑐𝑚
𝛾𝛽𝑔 − 𝛾𝑘 cos𝜃𝑐𝑚

𝑘 sin 𝜃𝑐𝑚

) 

Since the z-position is 

𝛼 𝑧 = 𝑝𝑧 = (𝛾𝛽𝐸𝑐𝑚 − 𝛾𝑘 cos 𝜃𝑐𝑚) cos 𝜃𝐴 + 𝑘 sin(𝜃𝑐𝑚) sin𝜃𝐴 

With the energy  

𝑒 + 𝑚 = 𝐸𝑐𝑚 − 𝛾𝛽𝑘 cos 𝜃𝑐𝑚 
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Eliminate 𝜃𝑐𝑚, we get 

𝛼𝛽𝑧 = (𝑒 +𝑚 −
𝐸𝑐𝑚
𝛾
) cos 𝜃𝐴 +

1

𝛾
√(𝛾𝛽𝑘)2 − (𝐸𝑐𝑚 − 𝑒 −𝑚)

2 sin 𝜃𝐴 

 

In the above plot, the orange line is the normal constant 𝐸𝑥 line, the green curve is 𝜃𝐴 = 50 mrad, and 

the red curve is 𝜃𝐴 = −50 mrad. 50 mard ~ 2.9 deg. And the blue curve is with finite detector 

correction, such that 𝑎 = 0.01 meter. The reaction is 208Pb(d,p) at 10 MeV/u, magnetic field is 2.85 T.  

In this calculation, we can see the finite emittance of the beam could contribute a lot to the energy 

resolution.   

Classical Limit 
When the beam energy is small so that the relativistic effect is small, 𝛽𝑐 → 𝑉𝑐𝑚, the cyclotron period 

becomes  

𝑡𝑐 =
2𝜋

𝑐𝐵

𝑚

𝑞
𝛾𝐿 →

2𝜋

𝑐𝐵

𝑚

𝑞
  

The constant 𝐸𝑥 line is  

𝐸𝑏 =
𝐸𝑐𝑚
𝛾
+
𝑐𝑞𝐵

2𝑚
𝛽𝑧 → 𝐸𝑏 =

𝐸𝑐𝑚
𝛾
+
𝑚𝑉𝑐𝑚
𝑡𝑐

𝑧 

The CM frame energy 𝐸𝑐𝑚 → 𝑚𝑐
2 +

1

2
𝑚𝑢2. Divided by the Lorentz 𝛾, it becomes  

𝐸𝑐𝑚
𝛾
→ 𝑚𝑐2 +

1

2
𝑚𝑢2 −

1

2
𝑚𝑉𝑐𝑚

2  
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Also, 𝐸𝑏 → 𝑚𝑐
2 + 𝑒 

𝑒 ≅
1

2
𝑚𝑢2 −

1

2
𝑚𝑉𝑐𝑚

2 +
𝑚𝑉𝑐𝑚
𝑡𝑐

𝑧 

Alpha Source  
When alpha source is put at the axis, the 4-momentum is 

ℙ = (𝐸, 𝑝𝑧, 𝑝𝑥𝑦), 𝐸 = 𝑚𝛼 + 𝑇, 𝑝𝑧 = 𝑝 cos 𝜃 , 𝑝 = √2𝑚𝛼𝑇 + 𝑇
2 

Under a magnetic field, the bending radius is  

𝜌 =
𝑃

𝑐𝑞𝐵
 

where 𝑃 is momentum in MeV/c that perpendicular to the magnetic field 𝐵 (in T), 𝑞 is the charge state, 

𝑐 = 299.792458. The unit of 𝜌 is meter  

𝜌 =
𝑝 sin 𝜃

𝑐𝑞𝐵
,  

The time for a cycle is  

𝑡 =
2𝜋𝜌

𝑣⊥
=
2𝜋

𝑐𝑞𝐵

𝑝 sin 𝜃

𝑣⊥
 

Thus, the length for a cycle is  

𝑧0 = 𝑣∥𝑡 = 2𝜋𝜌
𝑣∥
𝑣⊥
=
2𝜋

𝑐𝑞𝐵

𝑣∥
𝑣⊥
𝑝 sin 𝜃 =

2𝜋

𝑐𝑞𝐵
𝑝 cos 𝜃 ,

𝑣∥
𝑣⊥
=

1

tan𝜃
 

𝑧0 =
2𝜋

𝑐𝑞𝐵
𝑝 cos 𝜃 

The locus is 

(
𝑥
𝑦) = 𝜌(

sin (tan(𝜃)
𝑧

𝜌
−  𝜙) + sin𝜙

𝜎 (cos (tan(𝜃)
𝑧

𝜌
−  𝜙) − cos𝜙)

) 

Where 𝜎 = +1 when B-field is parallel with the z-axis for positive charged particle. 𝜎 = −1 when the B-

field is anti-parallel.   

The radius is 

𝑟 = √𝑥2 + 𝑦2 = √2𝜌√1 − cos (tan(𝜃)
𝑧

𝜌
) 
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Finite axial detector  
A finite axial detector is a polygonal prism that surrounded and centered the HELIOS axis and larger than 

the beam size. The blue circle is the XY projection of the particle trajectory. The orange line is one of the 

detector plans. 

 

For am axial detector, the normal of a plane is  

�̂� = (cos𝜙𝑝 , sin𝜙𝑝 , 0) 

The equation for the detector plane is 

𝑥 cos𝜙𝑝 + 𝑦 sin𝜙𝑝 = 𝑎 

Where 𝑎 is the shortest distance from the plane to z-axis.  

The equation of the locus of the positive charged particle, when the B-field is direct to the z-axis, is 

(
𝑥
𝑦) = 𝜌(

sin (tan(𝜃)
𝑧

𝜌
−  𝜙) + sin𝜙

𝜎 (cos (tan(𝜃)
𝑧

𝜌
−  𝜙) − cos𝜙)

) 

Where (𝜃, 𝜙) is the scattering angle of positively charged particle b, 𝜎 is the +1 for B-field along z-axis, -1 

for B-field against z-axis. 

Define Δ𝜙 = 𝜙 − 𝜙𝑝, the hit points are 

𝑧ℎ𝑖𝑡 =
𝜌

tan(𝜃)
(𝜎Δ𝜙 + 𝑛𝜋 + (−1)𝑛 sin−1 (

𝑎

𝜌
− 𝜎 sin(Δ𝜙))) , 𝑛 = 0,1,2…. 

For real solution, 

−1 <
𝑎

𝜌
− 𝜎 sin(Δ𝜙) < 1 



12 

Notice that the length for a cycle is 

𝑧0 =
2𝜋 𝜌

tan(𝜃)
 

𝑧ℎ𝑖𝑡 =
𝑧0
2𝜋
(𝜎Δ𝜙 + 𝑛𝜋 + (−1)𝑛 sin−1 (

𝑎

𝜌
− 𝜎 sin(Δ𝜙))) 

Since we want to know which point is hit from outside, i.e. the direction of the particle is toward the 

axis, not outward from the axis.  

The direction vector for the particle is 

𝑑

𝑑𝑧
(
𝑥
𝑦) = 𝜌 tan(𝜃)(

cos (tan(𝜃)
𝑧

𝜌
− 𝜎𝜙)

𝜎 sin (tan(𝜃)
𝑧

𝜌
− 𝜎𝜙)

) 

The dot product with the plane normal 

cos 𝜃′ = 𝜌 tan(𝜃) cos (tan(𝜃)
𝑧

𝜌
− 𝜎Δ𝜙) < 0 

⇒ cos (tan(𝜃)
𝑧

𝜌
− 𝜎Δ𝜙) < 0 

In fact, using geometrical argument, for 𝑛 = 𝑜𝑑𝑑 number, the hit point is always inward. Substitute 𝑧ℎ𝑖𝑡 

     cos (𝑛𝜋 + (−1)𝑛 sin−1 (
𝑎

𝜌
− 𝜎 sin(Δ𝜙))) 

= (−1)𝑛 cos (sin−1 (
𝑎

𝜌
− 𝜎 sin(Δ𝜙))) 

= (−1)𝑛√1− (
𝑎

𝜌
− 𝜎 sin(Δ𝜙))

2

< 0 

This proves the geometrical argument that 𝑛 = 𝑜𝑑𝑑.  

A special case for 𝜙 = 0,𝜙𝑝 = 𝜋, 𝑛 = 1 

𝑧ℎ𝑖𝑡 =
𝜌

tan(𝜃)
(2𝜋 − sin−1 (

𝑎

𝜌
)) 

         = 𝑧0 (1 −
1

2𝜋
sin−1 (

𝑎

𝜌
)) 

The rotated angle is smaller then 2𝜋. When 𝜌 ≫ 𝑎 

𝑧ℎ𝑖𝑡 ≈ 𝑧0 (1 −
1

2𝜋

𝑎

𝜌
) 

 

With the transfer reaction, when 𝑒 is large, 𝜌 ≫ 𝑎, and the sin−1() becomes small. Express 𝜌 and 𝑧0  
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𝜌 =
𝑘 sin𝜃𝑐𝑚
𝑐𝑞𝐵

, 𝛼𝛽𝑧0 = 𝐸𝑏 −
𝐸𝑐𝑚
𝛾

 

Since 

     𝐸𝑏 = 𝛾𝐸𝑐𝑚 − 𝛾𝛽𝑘 cos 𝜃𝑐𝑚 

⇒ cos𝜃𝑐𝑚 =
1

𝛾𝛽𝑘
(𝛾𝐸𝑐𝑚 − 𝐸𝑏) 

Thus,  

𝑘 sin𝜃𝑐𝑚 =
√𝛾2𝛽2𝑘2 − (𝛾𝐸𝑐𝑚 − 𝐸𝑏)

2

𝛾𝛽
 

Than we have, 

𝛼𝛽𝑧 = (𝐸𝑏 −
𝐸𝑐𝑚
𝛾
)(1 −

𝛽𝛾𝛼𝑎

√𝛾2𝛽2𝑘2 − (𝛾𝐸𝑐𝑚 − 𝐸𝑏)
2
) 

 

 

Off-axis Effect 
When the helix of particle b is off axis.  

(
𝑥
𝑦) = 𝜌(

sin (tan(𝜃)
𝑧

𝜌
+ 𝜙) − sin𝜙

cos𝜙 − cos (tan(𝜃)
𝑧

𝜌
+ 𝜙)

) + 𝜌0 (
cos𝜙0
sin𝜙0

) 

The solution for 𝑧ℎ𝑖𝑡 becomes 
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𝑧ℎ𝑖𝑡 =
𝜌

tan(𝜃)
(𝜙𝑝 − 𝜙 + 𝑛𝜋 + (−1)

𝑛 sin−1 (
𝑎 − 𝜌0 cos(𝜙0 −𝜙𝑝)

𝜌
+ sin(𝜙 − 𝜙𝑝))) , 𝑛 = 0,1,2…. 

For 𝑛 = 1, 𝜙𝑝 = 𝜋,𝜙 = 0 

𝑧ℎ𝑖𝑡 = 𝑧0 (1 −
1

2𝜋
sin−1 (

𝑎 + 𝜌0 cos(𝜙0)

𝜌
)) , |

𝑎 + 𝜌0 cos(𝜙0)

𝜌
| < 1 

We can see, the effect is same as change of the effective 𝑎𝑒𝑓𝑓 = 𝑎 − 𝜌0 cos(𝜙0 − 𝜙𝑝). Also the beam 

size must be smaller than the detector distance 𝜌 > 𝑎 > 𝜌0 cos(𝜙0 − 𝜙𝑝). 

 

Radial Detector (no conclusion yet) 
A radial detector is a plane detector located at fixed z-pos (𝑧𝑅) and perpendicular to HELIOS axis. The hit 

position with an off-axis helix is 

(
𝑥
𝑦) = 𝜌(

sin (tan(𝜃)
𝑧𝑅
𝜌
+ 𝜙) − sin𝜙

cos𝜙 − cos (tan(𝜃)
𝑧𝑅
𝜌
+ 𝜙)

)+ 𝜌0 (
cos𝜙0
sin𝜙0

) 

For 𝜌0 = 0, the radial position is 

𝑟 = √𝑥2 + 𝑦2 = 𝜌√2 − 2 cos (tan(𝜃)
𝑧𝑅
𝜌
) 

𝜌 =
𝑝𝑥𝑦

𝑐𝑍𝐵
=
𝑘 sin𝜃𝑐𝑚
𝑐𝑍𝐵

, tan 𝜃 =
𝑝𝑥𝑦

𝑝𝑧
,

tan(𝜃) 𝑧𝑅
𝜌

=
𝑐𝑍𝐵

𝑝𝑧
𝑧𝑅 

Since the z-pos is fixed, the TOF from target to the detector is 

𝑡 =
𝑧𝑅
𝑣𝑧
=
𝑧𝑅
𝑐

𝐸

𝑝𝑧
 

Eliminate the 𝑘 cos 𝜃𝑐𝑚 in 𝑝𝑧, we have 

𝑒 + 𝑚 =
𝐸𝑐𝑚
𝛾

𝑐𝑡

𝛽𝑧𝑅 − 𝑐𝑡
 

 

Knockout reaction  
The reaction is notated as A(a, 12)B, where A = B + b, in which b is the bounded nucleus, and 1 and 2 are 

free scattering particles. When particle b knocked out, it becomes particle 2. The energy and 

momentum conservation are 

ℙ𝐴 +ℙ𝑎 = ℙ1 + ℙ2 + ℙ𝐵 
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In which the mass of particle B is  

𝑚𝐵 +𝑚2 = 𝑚𝐴 + 𝑆 

The reaction Q-value is  

𝑄 = 𝑚𝐴 +𝑚𝑎 −𝑚1 −𝑚2 −𝑚𝐵 = −𝑆 

The recoil of the particle B assumed the form  

ℙ𝐵 = (𝑚𝐵, −𝑘𝑏⃗⃗⃗⃗ ) = (√(𝑚𝐴 −𝑚2 + 𝑆)
2 + |𝑘𝑏⃗⃗⃗⃗ | 

2, −𝑘𝑏⃗⃗⃗⃗ ) 

Where 𝑆 is separation energy, �⃗�  is the recoiled momentum, which is same but opposite direction with 

the bounded nucleus b, as particle A is stationary. 

Assume a is the incident particle and A is the target, We can from a quai-particle b by 

ℙ𝑏 = ℙ𝐴 −ℙ𝐵 

ℙ𝑏 = (𝑚𝑏 , �⃗� 𝑏) = (𝑚𝐴 −√(𝑚𝐴 −𝑚𝑎 + 𝑆)
2 + |𝑘𝑏⃗⃗⃗⃗ |

2
, 𝑘𝑏⃗⃗⃗⃗ ) 

Thus, the rest is like that of transfer reaction, except the target is also moving. 

Because the “target” b and incident particle a are both moving, this forms the plane of incident channel. 

And the exit channel, particles 1 and 2 cannot be on the same plane. The following illustration is normal 

kinematics.  
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Once the quasi-particle is constructed, the reaction is reduced to  

ℙ𝑎 +ℙ𝑏 = ℙ1 + ℙ2 

Thus, the next step of calculation is identical to transfer reaction. The reaction constants are 

𝛽 =
𝑘𝑎⃗⃗ ⃗⃗ + 𝑘𝑏⃗⃗⃗⃗ 

𝐸𝑎 + 𝐸𝑏
, 𝛾 =

1

√1 − |𝛽|2
 

𝐸𝑡 = √(𝐸𝑎 + 𝐸𝑏)
2 + |𝑘𝑎⃗⃗ ⃗⃗ + 𝑘𝑏⃗⃗⃗⃗ |

2
 

𝑘2 =
1

4𝐸𝑡
2
(𝐸𝑡
2 − (𝑚1 +𝑚2)

2)(𝐸𝑡
2 − (𝑚1 −𝑚2)

2) 

in above, 𝛽  is the Lorentz boost to NN-CM frame. 𝐸𝑡 is the total energy in NN-CM frame, or the intrinsic 

total energy of NN-system. 𝑘 is the magnitude of momentum of the scattered particles 1 and 2 in NN-

CM frame. 

Since the Lorentz boost of from the Lab frame to the NN-CM (nucleon-nucleon center of mass) frame is 

not on the z-axis, the formula for particles 1 and 2 is complicated. In the NN-CM frame, the four-vector 

for particle 1 is 

ℙ1 = (

𝐸
𝑝𝑧
𝑝𝑥𝑦
) = (

√𝑚1
2 + 𝑘2

𝑘 cos𝜃
𝑘 sin𝜃

) 

Where 𝜃 is not the CM frame scattering angle, because the particle a could has some finite polar angle. 

Inverse Kinematics 

In inverse kinematics, the momentum 𝑘𝑎⃗⃗ ⃗⃗ = 0, that simplify the calculation that, the reaction is a tilted 

transfer reaction, i.e. the reaction axis is not on the z-axis.  

 

Reconstruct scattered four-momentum 
In the knockout experiment, we needed to reconstruct the four momenta. Under HELIOS, to problem is 

converting 𝑧ℎ𝑖𝑡 to 𝜃𝑖, the lab angle.  

 

Inverse Problem 
We show that the solution from CM frame to Lab frame, or from theory to experiment. Basically, the 

HELIOS is a problem of finding the mapping 

(
𝐸𝑥
𝜃𝑐𝑚

) ⟷ (
𝑒
𝑧
) 
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In term of 𝐸𝑥  and cos 𝜃𝑐𝑚 
We can express (𝑧, 𝑒) in term of (𝐸𝑥 , 𝜃𝑐𝑚) as 

(
𝑒

𝑧
) =

𝛾

2𝑀𝑐
(
𝑀𝑐
2 +𝑚𝑏

2 − (𝑚𝐵 + 𝐸𝑥)
2 − 𝛽 cos 𝜃𝑐𝑚√(𝑀𝑐

2 − (𝑚 +𝑚𝐵 + 𝐸𝑥)
2)(𝑀𝑐

2 − (𝑚 −𝑀 − 𝐸𝑥)
2)

𝛽(𝑀𝑐
2 +𝑚𝑏

2 − (𝑚𝐵 + 𝐸𝑥)
2) − cos 𝜃𝑐𝑚√(𝑀𝑐

2 − (𝑚 +𝑀 + 𝐸𝑥)
2)(𝑀𝑐

2 − (𝑚 −𝑀 − 𝐸𝑥)
2)
) 

The inverse  

(
𝐸𝑥

cos 𝜃𝑐𝑚
) =

(

 
 
 −𝑚𝐵 +√𝑀𝑐

2 +𝑚𝑏
2 − 2𝛾𝑀𝑐(𝐸𝑏 − 𝛼𝛽𝑧)

𝛾(𝐸𝑏𝛽 − 𝛼 𝑧)

√𝛾2(𝐸𝑏 − 𝛼𝛽𝑧)
2 −𝑚𝑏

2

)

 
 
 

 

 

Get 𝑘 and 𝜃𝑐𝑚 from 𝑒 and 𝑧 
From experiment, we get the energy (𝑦 = 𝐸𝑏 = 𝑒 +𝑚) and position (𝑧), then we can reconstruct the 

reaction constant 𝑘 and 𝜃𝑐𝑚.  

𝑘2 = 𝛾2(𝑦 − 𝛽𝛼𝑧)2 −𝑚2 

cos𝜃𝑐𝑚 =
(𝛼𝑧 − 𝛽𝑦)

𝛾𝑘
=
𝛾√𝑚2 + 𝑘2 − 𝑦

𝛾𝛽𝑘
 

From 𝑘2, the total mass of the particle B is 

𝑚𝐵
2 = 𝑚𝑏

2 +𝑀𝑐
2 − 2𝑀𝑐√𝑘

2 +𝑚𝑏
2 

Where 𝑀𝑐 is the total mass of the system. 

 

Finite detector 
The coupled solution is 

𝑦 = 𝑒 +𝑚 = 𝛾√𝑚2 + 𝑘2 − 𝛾𝛽𝑘 cos 𝜃𝑐𝑚 

𝜌 =
𝑘 sin𝜃𝑐𝑚
𝑐𝑞𝐵

=
𝑘 sin 𝜃𝑐𝑚
2𝜋𝛼

  

𝛼𝛽𝛾𝑧 = (𝛾𝑦 − √𝑚2 + 𝑘2) (1 −
1

2𝜋

𝑎

𝜌
) 

Solve cos 𝜃 from 1st equation, and sub into 2nd equation,  
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𝛼𝛽𝛾𝑧 = (𝛾𝑦 − √𝑚2 + 𝑘2)

(

 1 −
𝛽𝛾𝛼𝑎

√2𝑦𝛾√𝑚2 + 𝑘2 − 𝑦2 −𝑚2𝛾2 − 𝑘2)

  

Use  

𝑘 → 𝑚 tan(𝑥) , 0 < 𝑥 <
𝜋

2
 

𝛼𝛽𝛾𝑧 = (𝛾𝑦 −𝑚 sec(𝑥)) (1 −
𝛽𝛾𝛼𝑎

√2𝑦𝛾𝑚 sec(𝑥) − 𝑦2 −𝑚2𝛾2 −𝑚2 tan2(𝑥)
) 

Under the square root, 

2𝑦𝛾𝑚 sec(𝑥) − 𝑦2 −𝑚2𝛾2 −𝑚2 sec2(𝑥) + 𝑚2 

= −𝑦2𝛾2 + 2𝑦𝛾𝑚 sec(𝑥) − 𝑚2 sec2(𝑥) + 𝑦2𝛾2 − 𝑦2 −𝑚2𝛾2 +𝑚2 

= −(𝑦𝛾 −𝑚sec(𝑥))2 + (𝑦2 −𝑚2)𝛾2𝛽2 

Than 

𝛼𝛽𝛾𝑧 = (𝛾𝑦 −𝑚 sec(𝑥)) (1 −
𝛽𝛾𝛼𝑎

√(𝑦2 −𝑚2)𝛾2𝛽2 − (𝑦𝛾 −𝑚 sec(𝑥))2
) 

Replace 

𝑦𝛾 −𝑚sec(𝑥) → 𝐾 

(𝑦2 −𝑚2)𝛾2𝛽2 → 𝐻2 > 0 

𝛼𝛽𝛾𝑧 → 𝑍 

𝛽𝛾𝛼𝑎 → 𝐺 > 0 

𝑍 = 𝐾 (1 −
𝐺

√𝐻2 − 𝐾2
) 

Next, replace  

𝐾 → 𝐻 sin𝜙 , −
𝜋

2
< 𝜙 <

𝜋

2
 

𝑍 = 𝐻 sin𝜙 (1 −
𝐺

𝐻 cos𝜙
) 

or 

𝑍 = 𝐻 sin𝜙 − 𝐺 tan𝜙 

The momentum square is  

𝑘2 = (𝛾𝐸𝑐𝑚 −𝐻 sin𝜙)
2 −𝑚2 

When 𝑎 → 0, 𝐺 → 0 

𝑍 = 𝐻 sin𝜙 = 𝐾 = 𝛾𝑦 −𝑚 sec(𝑥) 

→  𝛼𝛽𝛾𝑧 = 𝛾𝑦 − √𝑚2 + 𝑘2  
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→ 𝑦 =
1

𝛾
√𝑚2 + 𝑘2 + 𝛼𝛽𝑧 

Or  

𝑘2 = 𝛾2(𝑦 − 𝛼𝛽𝑧)2 −𝑚2 

Return to the infinite detector solution. 

Since 𝐻, 𝐺 > 0, and 𝐺 < 𝐻, as the term  
𝐺

√𝐻2−𝐾2
=

𝑎

2𝜋𝜌
< 1 

The function 

𝑓(𝜙) = 𝐻 sin𝜙 − 𝐺 tan 𝜙 

Looks like this 

 

Where the orange line is the 𝑓(𝜙) and the blue line is 𝑓(𝜙) = 𝑍.  We can see, there are multi-solution 

for 𝜙. Normally, when 𝜃𝑐𝑚 ≫ 0, the derivative is 

𝑓′(𝜙) = 𝐻 cos𝜙 − 𝐺 sec2𝜙 > 0 

From experience (need proof), 𝑓′(𝜙) > 0 is the correct solution for most of the case.  

Only when the  𝜃𝑐𝑚 is too small, so that the e-z line bended so much. In the following plot, the 𝐸𝑥 ∈

(0, 15) MeV, 𝜃𝑐𝑚 ∈ (0°, 60°). There is region where double solution exists, in that case, at the boundary 

that manifold is folded, the proper solution takes 𝑓′(𝜙) < 0, 𝜙 𝑍 > 0.  
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It seems (Need proof) that the fold happens when  

𝛾2𝛽2𝑘2 − (𝛾𝐸𝑐𝑚 − 𝑦)
2 = 0 

To numerically find the solution, a newton’s method is adequacy.  

𝜙𝑖+1 = 𝜙𝑖 −
𝑓(𝜙𝑖)

𝑓′(𝜙𝑖)
 

 

Appendix  
Lorentz Transform with boost 𝛽  

ℙ = (
𝐸

�⃗� 
) → ℙ′ = (

𝛾𝐸 + 𝛾𝛽 ⋅ �⃗� 

𝛾𝐸𝛽 + �⃗� + (𝛾 − 1)(�̂� ⋅ �⃗� )�̂�
) = (

𝛾𝐸 + 𝛾𝛽𝑘 cos𝜃

(𝛾𝛽𝐸 + 𝛾𝑘 cos 𝜃)�̂� + 𝑘 sin𝜃 �̂�
) 

where �̂� ⊥ �̂�. 

Kinematics of 2-body scattering  
Suppose the reaction is labeled as b(a,1)2, where a→1, b→2 after scattering. The four momenta of the 

incident channel are 

ℙ𝑎 = (
√𝑚𝑎

2 + 𝑘𝑎
2 

𝑘𝑎⃗⃗ ⃗⃗ 
) , ℙ𝑏 = (

𝑚𝑏

0⃗ 
)  

The center of mass 4-vector is 
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ℙ𝑐 = ℙ𝑎 +ℙ𝑏 = (
√𝑚𝑎

2 + 𝑘𝑎
2 +𝑚𝑏

𝑘𝑎⃗⃗ ⃗⃗ 
) = (

𝐸𝑐  

𝑘𝑎⃗⃗ ⃗⃗ 
) 

The system mass is 𝑀𝑐 = √𝐸𝑐
2 − 𝑘𝑎

2 = √𝑚𝑎
2 +𝑚𝑏

2 + 2𝑚𝑏√𝑚𝑎
2 + 𝑘𝑎

2 

The Lorentz boost vector is 

𝛽 =
𝑘𝑎⃗⃗ ⃗⃗ 

𝐸𝑐
, 𝛾 =

𝐸𝑐
𝑀𝑐
, 𝛾𝛽 =

𝑘𝑎⃗⃗ ⃗⃗ 

𝑀𝑐
 

The system undergoes a Lorentz boot, so that the total momentum from 0⃗  to 𝑘𝑎⃗⃗ ⃗⃗ = 𝛾𝛽 𝑀𝑐, to see that, in 

the CM frame, 

ℙ𝑐
′ = (

𝛾𝐸𝑐 − 𝛾𝛽 ⋅ 𝑘𝑎⃗⃗ ⃗⃗  

−𝛾𝛽 𝐸𝑐 + 𝛾𝑘𝑎⃗⃗ ⃗⃗ 
) = (

𝑀𝑐  

0⃗ 
) 

where 

𝛾𝐸𝑐 − 𝛾𝛽 ⋅ 𝑘𝑎⃗⃗ ⃗⃗ = 𝛾𝐸𝑐 − 𝛾
𝑘𝑎
2

𝐸𝑐
=
𝛾

𝐸𝑐
(𝑀𝑐

2) = 𝑀𝑐 

In CM frame, 

ℙ𝑎
′ =

(

 
𝛾√𝑚𝑎

2 + 𝑘𝑎
2 − 𝛾𝛽 ⋅ 𝑘𝑎⃗⃗ ⃗⃗  

−𝛾𝛽 √𝑚𝑎
2 + 𝑘𝑎

2 + 𝛾𝑘𝑎⃗⃗ ⃗⃗ )

 , ℙ𝑏
′ = (

𝛾𝑚𝑏

−𝛾𝛽 𝑚𝑏 
) 

Check the energy part 

𝛾√𝑚𝑎
2 + 𝑘𝑎

2 − 𝛾𝛽 ⋅ 𝑘𝑎⃗⃗ ⃗⃗ + 𝛾𝑚𝑏 = 𝛾𝐸𝑐 − 𝛾𝛽 ⋅ 𝑘𝑎⃗⃗ ⃗⃗ = 𝑀𝑐 

The momentum part 

−𝛾𝛽 √𝑚𝑎
2 + 𝑘𝑎

2 + 𝛾𝑘𝑎⃗⃗ ⃗⃗ − 𝛾𝛽 𝑚𝑏 = 𝛾𝛽 𝐸𝑐 + 𝛾𝑘𝑎⃗⃗ ⃗⃗ = 0 

After the scattering, only direction changed.  

𝑝2 =
1

4𝑀𝑐
2
(𝑀𝑐

2 − (𝑚1 +𝑚2)
2)(𝑀𝑐

2 − (𝑚1 −𝑚2)
2) 

The 4-momenta 

ℙ1
′ = (

√𝑚1
2 + 𝑝2 

𝑝 

) , ℙ2
′ = (

√𝑚2
2 + 𝑝2 

−𝑝 

) 

Return to the Lab frame 
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ℙ1
′ =

(

 
𝛾√𝑚1

2 + 𝑝2 + 𝛾𝛽 ⋅ 𝑝  

𝛾√𝑚1
2 + 𝑝2𝛽 + 𝑝 + (𝛾 − 1)(�̂� ⋅ 𝑝 )�̂�

)

 , ℙ2
′ =

(

 
𝛾√𝑚2

2 + 𝑝2 − 𝛾𝛽 ⋅ 𝑝  

𝛾√𝑚2
2 + 𝑝2𝛽 − 𝑝 − (𝛾 − 1)(�̂� ⋅ 𝑝 )�̂�

)

  

 

The momentum part can be rewritten using �̂� ⋅ 𝑝 = 𝑝 cos 𝜃 

ℙ1
′ =

(

 
 

𝛾√𝑚1
2 + 𝑝2 + 𝛾𝛽𝑝 cos 𝜃 

(𝛾𝛽√𝑚1
2 + 𝑝2 + 𝛾𝑝 cos𝜃) �̂� + 𝑝 sin 𝜃  �̂�

)

 
 
,ℙ2
′ =

(

 
 

𝛾√𝑚2
2 + 𝑝2 − 𝛾𝛽𝑝 cos 𝜃 

(𝛾𝛽√𝑚2
2 + 𝑝2 − 𝛾𝑝 cos𝜃) �̂� − 𝑝 sin 𝜃  �̂�

)

 
 

 

where �̂� ⊥ �̂�.  

The total energy must be conserved, 

𝐸1 + 𝐸2 = 𝛾√𝑚1
2 + 𝑝2 + 𝛾√𝑚2

2 + 𝑝2 = √𝑚𝑎
2 + 𝑘𝑎

2 +𝑚𝑏 

The opening angle  

𝑘1𝑘2 cos 𝜃12 = (𝛾𝛽√𝑚1
2 + 𝑝2 + 𝛾𝑝 cos𝜃)(𝛾𝛽√𝑚2

2 + 𝑝2 − 𝛾𝑝 cos𝜃) − 𝑝2 sin2 𝜃 

 

Assume the masses of 1,2 are equal the masses of a, b 
After the scattering, only direction changed. Also, we can check the momentum formula 

𝑝2 =
1

4𝑀𝑐
2
(𝑀𝑐

2 − (𝑚𝑎 +𝑚𝑏)
2)(𝑀𝑐

2 − (𝑚𝑎 −𝑚𝑏)
2)

?
→ 𝛾2𝛽2𝑚𝑏

2 

Each term,  

𝑀𝑐
2 − (𝑚𝑎 +𝑚𝑏)

2 = 𝑚𝑎
2 +𝑚𝑏

2 + 2𝑚𝑏√𝑚𝑎
2 + 𝑘𝑎

2 − (𝑚𝑎 +𝑚𝑏)
2 = 2𝑚𝑏√𝑚𝑎

2 + 𝑘𝑎
2 − 2𝑚𝑎𝑚𝑏 

𝑀𝑐
2 − (𝑚𝑎 −𝑚𝑏)

2 = 𝑚𝑎
2 +𝑚𝑏

2 + 2𝑚𝑏√𝑚𝑎
2 + 𝑘𝑎

2 − (𝑚𝑎 −𝑚𝑏)
2 = 2𝑚𝑏√𝑚𝑎

2 + 𝑘𝑎
2 + 2𝑚𝑎𝑚𝑏 

𝑝2 =
1

4𝑀𝑐
2 (4𝑚𝑏

2(𝑚𝑎
2 + 𝑘𝑎

2) − 4𝑚𝑎
2𝑚𝑏

2) = 𝑚𝑏
2
𝑘𝑎
2

𝑀𝑐
2 = 𝛾

2𝛽2𝑚𝑏
2  

 

 

Assume the mass of a and b are the same 
Suppose the masses 𝑚𝑎 = 𝑚𝑏 = 𝑚 = 𝑚1 = 𝑚2 
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ℙ𝑎
′ =

(

 
𝛾√𝑚2 + 𝑘𝑎

2 − 𝛾𝛽 ⋅ 𝑘𝑎⃗⃗ ⃗⃗ 

 −𝛾𝛽 √𝑚2 + 𝑘𝑎
2 + 𝛾𝑘𝑎⃗⃗ ⃗⃗ )

 , ℙ𝑏
′ = (

𝛾𝑚

−𝛾𝛽 𝑚 
) 

𝑝2 =
𝑀𝑐
2

4
−𝑚2 = 𝛾2𝛽2𝑚2⟹𝑀𝑐

2 = 4(𝛾2𝛽2 + 1)𝑚2 = 4𝛾2𝑚2 

𝑀𝑐 = 2𝛾𝑚 

As we expected, as the particle a and b should share equal energy in CM frame, i.e. 

𝛾√𝑚2 + 𝑘𝑎
2 − 𝛾𝛽 ⋅ 𝑘𝑎⃗⃗ ⃗⃗ = 𝛾𝑚 

Which can be obtained using 

𝑚2 = (𝛾√𝑚2 + 𝑘𝑎
2 − 𝛾𝛽 ⋅ 𝑘𝑎⃗⃗ ⃗⃗ )

2

− 𝛾2𝛽2𝑚2 

The scattered 4-momenta in CM frame are 

ℙ1
′ = (

𝛾𝑚 

𝑝 ) , ℙ2
′ = (

𝛾𝑚 

−𝑝 ) 

In Lab frame, 

ℙ1 = (
𝛾2𝑚 + 𝛾𝛽 ⋅ 𝑝 

𝛾2𝛽 𝑚 + 𝑝 + (𝛾 − 1)(�̂� ⋅ 𝑝 )�̂�
) , ℙ2 = (

𝛾2𝑚− 𝛾𝛽 ⋅ 𝑝 

𝛾2𝛽 𝑚 − 𝑝 − (𝛾 − 1)(�̂� ⋅ 𝑝 )�̂�
) 

The momentum part can be rewritten using �̂� ⋅ 𝑝 = 𝑝 cos 𝜃 = 𝛾𝛽𝑚 cos 𝜃 

𝛾2𝛽 𝑚 + 𝑝 + (𝛾 − 1)(�̂� ⋅ 𝑝 )�̂� = (𝛾2𝛽𝑚 + 𝛾𝑝 cos 𝜃)�̂� + 𝑝 sin𝜃  �̂� 

Where �̂� ⊥ �̂�.  

ℙ1 = (
𝛾2𝑚(1 + 𝛽2 cos𝜃)

𝛾2𝛽𝑚(1 + cos 𝜃)�̂� + 𝑝 sin 𝜃  �̂�
) , ℙ2 = (

𝛾2𝑚(1 − 𝛽2 cos𝜃)

𝛾2𝛽𝑚(1 − cos 𝜃)�̂� − 𝑝 sin 𝜃  �̂�
) 

When scattering angle 𝜃 = 0 

ℙ1 = (
𝛾2𝑚(1 + 𝛽2)

2𝛾2𝑚 𝛽 
) , ℙ2 = (

𝑚

0⃗ 
) 

Check: 

𝛾2𝑚(1 + 𝛽2) = 𝛾2𝑚+ (𝛾2 − 1)𝑚 =  2𝛾2𝑚 −𝑚 = 𝛾𝑀𝑐 −𝑚 = 𝐸𝑐 −𝑚 = √𝑚
2 + 𝑘𝑎

2 

2𝛾2𝑚 𝛽 = 2𝛾𝑚
𝑘𝑎⃗⃗ ⃗⃗ 

𝑀𝑐
= 𝑘𝑎⃗⃗ ⃗⃗  

The total energy or energy conservation, 
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𝐸1 + 𝐸2 = 𝛾
2𝑚(1 + 𝛽2 cos 𝜃) + 𝛾2𝑚(1 − 𝛽2 cos 𝜃) = 2𝛾2𝑚 = 𝐸𝑐 

The opening angle 

𝑘1𝑘2 cos 𝜃12 = 𝛾
4𝛽4𝑚2 sin2 𝜃 

 

 

Assume the mass of 1 and 2 becomes equal after scattering 
Suppose the mass becomes 𝑚, the momentum is 

𝑝2 =
𝑀𝑐
2

4
−𝑚2 =

1

4
(𝑚𝑎

2 +𝑚𝑏
2 + 2𝑚𝑏√𝑚𝑎

2 + 𝑘𝑎
2 − 4𝑚2) 

ℙ1
′ = (

𝑀𝑐
2
 

𝑝 
) , ℙ2

′ = (

𝑀𝑐
2
 

−𝑝 
) 

ℙ1 = (

𝛾𝑀𝑐
2
+ 𝛾𝛽𝑝 cos 𝜃

(
𝛾𝛽𝑀𝑐
2

+ 𝛾𝑝 cos 𝜃) �̂� + 𝑝 sin𝜃 �̂�

) , ℙ2 = (

𝛾𝑀𝑐
2
− 𝛾𝛽𝑝 cos 𝜃

(
𝛾𝛽𝑀𝑐
2

− 𝛾𝑝 cos 𝜃) �̂� − 𝑝 sin 𝜃 �̂�

) 

 

Opening angle 

𝑘1𝑘2 cos 𝜃12 =
𝛾2𝛽2𝑀𝑐

2

4
− 𝛾2𝛽2𝑝2 cos2 𝜃 − 𝑝2 

=
𝛾2𝛽2𝑀𝑐

2

4
− 𝛾2𝛽2𝑝2 cos2 𝜃 − 𝑝2 =

𝛾2𝛽2𝑀𝑐
2

4
−
𝑀𝑐
2

4
+𝑚2 − 𝛾2𝛽2𝑝2 cos2 𝜃 

 

Non-relativistic Transfer reaction 
The reaction in the Lab frame is A(a,b)B, the velocity in the Lab frame is donated by 𝑣 , in the CM frame, 

the velocity denotes by 𝑢.  
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The velocity of particle A and the kinetic energy 𝐸𝐴 is related by 𝐸𝐴 =
𝑚𝑣𝐴

2

2
, or 𝑣𝐴 = √2𝐸𝐴/𝑚𝐴. The 

velocity of the CM (center-of-mass) frame is  

𝑉𝑐𝑚 =
𝑚𝐴

𝑚𝐴 +𝑚𝑎
𝑣𝐴 =

√2𝑚𝐴𝐸𝐴
𝑚𝐴 +𝑚𝑎

 

The particle’s velocities in the CM frame are 

𝑢𝐴 = 𝑣𝐴 − 𝑉𝑐𝑚 =
𝑚𝑎
𝑚𝐴
𝑉𝑐𝑚 

𝑢𝑎 = 𝑣𝑎 − 𝑉𝑐𝑚 = −𝑉𝑐𝑚 

The total momentum  

𝑚𝐴𝑢𝐴 +𝑚𝑎𝑢𝑎 = 0 

The total kinetic energy in the CM frame  

𝑇𝑐𝑚 =
1

2
𝑚𝐴𝑢𝐴

2 +
1

2
𝑚𝑎𝑢𝑎

2 =
1

2

𝑚𝑎
𝑚𝐴
(𝑚𝐴 +𝑚𝑎)𝑉𝑐𝑚

2 =
1

2

𝑚𝑎𝑚𝐴
𝑚𝑎 +𝑚𝐴

𝑣𝐴
2 =

𝑚𝑎
𝑚𝐴 +𝑚𝑎

𝐸𝐴 

After scattering, the balance of energy and momentum are 

1

2
𝑚𝑏𝑢𝑏

2 +
1

2
𝑚𝐵𝑢𝐵

2 = 𝑇𝑐𝑚 + 𝑄, 𝑄 = 𝑚𝐴 +𝑚𝑎 −𝑚𝑏 −𝑚𝐵 

𝑚𝑏𝑢𝑏 +𝑚𝐵𝑢𝐵 = 0 

The solution for the particle velocities is 

𝑢𝑏 = √
𝑚𝐵
𝑚𝑏
 √
2(𝑄 + 𝑇𝑐𝑚)

𝑚𝑏 +𝑚𝐵
, 𝑢𝐵 = √

𝑚𝑏
𝑚𝐵
 √
2(𝑄 + 𝑇𝑐𝑚)

𝑚𝑏 +𝑚𝐵
 

Move back to the Lab frame,  

𝑣𝑏⃗⃗⃗⃗ = (
−𝑢𝑏 cos 𝜃𝑐𝑚 + 𝑉𝑐𝑚
−𝑢𝑏 sin 𝜃𝑐𝑚

) , 𝑣𝐵⃗⃗ ⃗⃗ = (
𝑢𝐵 cos 𝜃𝑐𝑚 + 𝑉𝑐𝑚
𝑢𝐵 sin𝜃𝑐𝑚

) 

Let’s focus on the light particle form now on, it carries charge 𝑍 and moves in a magnetic field strength 

𝐵 in the z-direction. The distance in the z-direction after time 𝑡𝑐 is 

𝑧

𝑡𝑐
= −𝑢𝑏 cos 𝜃𝑐𝑚 + 𝑉𝑐𝑚 

The kinetic energy is  

𝐸𝑏 =
1

2
𝑚𝑏(𝑢𝑏

2 + 𝑉𝑐𝑚
2 − 2𝑢𝑏𝑉𝑐𝑚 cos𝜃𝑐𝑚) 

Eliminate 𝜃𝑐𝑚 both equations, we have  

𝐸𝑏 =
1

2
𝑚𝑏𝑢𝑏

2 −
1

2
𝑚𝑏𝑉𝑐𝑚

2 +
𝑚𝑏𝑉𝑐𝑚
𝑡𝑐

𝑧 
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The excitation energy of particle B is implicitly in 𝑢𝑏, and all other coefficients are fixed. 

The kinetic energy of particle b in CM frame is  

𝑇𝑏 =
1

2
𝑚𝑏 𝑢𝑏

2 =
𝑚𝐵(𝑄 + 𝑇𝑐𝑚)

𝑚𝑏 +𝑚𝐵
⟹𝑄+ 𝑇𝑐𝑚 =

𝑚𝑏 +𝑚𝐵
𝑚𝐵

𝑇𝑏 

Thus, the Ex-spectrum of particle B is, substitute 𝑄 → 𝑄0 − 𝐸𝑥, 

𝐸𝑥 = 𝑄0 + 𝑇𝑐𝑚 −
𝑚𝑏 +𝑚𝐵
𝑚𝐵

(𝐸𝑏 +
1

2
𝑚𝑏𝑉𝑐𝑚

2 −
𝑚𝑏𝑉𝑐𝑚
𝑡𝑐

𝑧) 

Projection of Ex for different reactions with same light particle charge state 
Suppose we have A(p,d), A(d,d) and A(d,t) reactions happened all at the same experiment, Since the 

charge states of all light recoil are the same, and the slope of the e-z plot only depends on the charge 

state, so that all reactions will have same slope and all reaction can be projected. 

The classical limit is  

𝐸𝑏 = 𝑇𝑏 −
1

2
𝑚𝑏𝑉𝑐𝑚

2 + 𝜂𝑧, 𝜂 =
𝑚𝑏𝑉𝑐𝑚
𝑡𝑐

 

And the Q-value  

𝑄 =
𝑚𝑏 +𝑚𝐵
𝑚𝐵

𝑇𝑏 − 𝑇𝑐𝑚 

The excitation energy in inside the Q-value, substitute 𝑄 → 𝑄0 − 𝐸𝑥 

𝑄0 − 𝐸𝑥 =
𝑚𝑏 +𝑚𝐵
𝑚𝐵

𝑇𝑏 − 𝑇𝑐𝑚 

𝐸𝑥 = 𝑄0 + 𝑇𝑐𝑚 −
𝑚𝑏 +𝑚𝐵
𝑚𝐵

𝑇𝑏 

𝐸𝑥 = 𝐹 −
𝑚𝑏 +𝑚𝐵
𝑚𝐵

(𝐸𝑏 − 𝜂𝑧), 𝐹 = 𝑄0 + 𝑇𝑐𝑚 −
𝑚𝑏 +𝑚𝐵

2

𝑚𝑏
𝑚𝐵

𝑉𝑐𝑚
2  

We can see, the projection 𝐸𝑏 − 𝜂𝑧 need a scaling factor (𝑚𝑏 +𝑚𝐵)/𝑚𝐵 to give the correct scale. And 

there are a few additional terms to do the offset.  

For mass of particle-A is larger than deuteron and fixed beam energy, the term  

𝑉𝑐𝑚 =
√2𝑚𝐴𝐸𝐴
𝑚𝐴 +𝑚𝑎

=
√2𝐸𝐴/𝑚𝐴
1 +𝑚𝑎/𝑚𝐴

≈ √
2𝐸𝐴
𝑚𝐴

= 𝑐𝑜𝑛𝑠𝑡. 

𝑇𝑐𝑚 =
𝑚𝑎

𝑚𝐴 +𝑚𝑎
𝐸𝐴 ≈

𝑚𝑎
𝑚𝐴
𝐸𝐴 

So, the offset factor approximately equal to  

𝐹 ≈ 𝑄0 +
(𝑚𝑎 −𝑚𝑏)𝑚𝐵 −𝑚𝑏

2

𝑚𝐴𝑚𝐵
𝐸𝐴 
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Replace all mass with mass number times the nucleon mass 𝑚𝑢 and simplify, 

𝐹 ≈ 𝑄0 +
(𝑎 − 𝑏)𝐵 − 𝑏2

𝐴𝐵
𝐸𝐴 

For the A(p,p), A(p,d), A(d,p), A(d,d) and A(d,t) reactions, 

𝐹(𝑝, 𝑝) ≈ −
1

𝐴𝐵
𝐸𝐴 

𝐹(𝑝, 𝑑) ≈ 𝑄0(𝑝, 𝑑) −
𝐵 − 4

𝐴𝐵
𝐸𝐴 

𝐹(𝑑, 𝑝) ≈ 𝑄0(𝑑, 𝑝) +
1

𝐵
𝐸𝐴 

𝐹(𝑑, 𝑑) ≈ −
4

𝐴𝐵
𝐸𝐴 

𝐹(𝑑, 𝑡) ≈ 𝑄0(𝑑, 𝑡) −
𝐵 + 9

𝐴𝐵
𝐸𝐴 

They have different offsets.  

 

 


