Kinematics in HELIOS detector and particle
detection

Saturday, December 17, 2022, Ryan Tang (goluckyryan@gmail.com)

Table of Contents

L T K3 (=2 gl =T Lot o 3
Special case: the (d,p) reaction at IoW @NergY.....c.cccccciiiiiiiiineeiiiiiiiiiieennnesieiisiiieseesssssissessseeessssnssses 3
1 B0 R 4 T o PP 4
LYo [ o 4 T T o o T 6
The coNStant EX liN@ ...ciiiiuiiiiiiiiiiiiiiiiiiiiie s snssssissnssassssssssssssssesssssssesssssssasssssssesssssssannsss 6
The coNStant @CIM lINE ...eeeeeeeeeiiiiiiiiiiiiiiieieiee e s s ss e s e s 6
The Bore radius liNe......ccivuuiiiiiuuiiiiiniiiiiiiiiieinisneiiesssietiesssssstesssssssesssssssssssssssssssssssssssssssssnnes 7
MaxXimum eXCitation ENEIBY ....cciiuiiieiiiieiiiiniiiiiiineiiiaiireeirasiinesrassstiasssrsesssansssssssssasssssnssssnesssnns 8
MiINIMUM INCIAENT BNEIBY ...ceeeeeiiieeiiireecci et cr e es s rrees e s srnnesessrnnessssrennssssrennsssseennsssssennsssssennnns 8
BT T=T I 2=t Tt 4 o T PP 8
AIDIA SOUICE o...aneaeeeeeeeeeeeeeeeeeereerreeeeneeeeesreesenssenssenesseassenssensssnssssssssnsssnsssnssssssssasasnsssnsssnnssnnne 9
LS T =0 o o L= =T ot (o N 10
With the transfer reaction ........cccciiiiiiiiiiiiiiiii s rssss e s sessssessesssssssssssssans 12
Off-axis Effect ...coceviiiiiiiiiiiccc e 13
Radial Detector (N0 CONCIUSION YEL)......ccceeuueeeeiiiirireeeeuenieeissnsinnsnnennssssssssssssssssmssssssssssssssssnns 13
L1 Lo Tot (o TV =1 Lo 1 Lo TN 14
LNVt = [ Ty o - 1o ol 16
Reconstruct scattered four-momentum ..........ccooiiiiiiiiiiiiiiiiiniii 16
LT L= = o o < =T 1 S 16
(100 =10 o To Y 10 - 1o Uo I o0 1Y 2 o 7 1 S 16
Get kand 0cm from € and Z.........uuuueieiiiiiiiiiiieiiinii s 17
T T = 1] = ot o N 17
APPECNAIX cceeneeeeeeeeeeerererereeereeretererasernssrsessraserassrnssssssssasssesssssssnssssssesssesnsssnssesasesasesnsssnssesasene 20
Kinematics of 2-body SCatteriNg......cuuciiiiieiiiiiirecrrerr e e ee e ren e ss e see s s s seenssssseenssssseensssssennnns 20



Assume the masses of 1,2 are equal the masses 0f @, Do
Assume the mass 0f 2 aNd D are the SAME ......eii i e e e e re e e e s e araaeas
Assume the mass of 1 and 2 becomes equal after SCattering ........oocciieeii i



Transfer Reaction

The kinematics of transfer reaction, denote as A(a,b)B, where A is incoming particle with larger mass, a
is target nucleus, b and B are scattered particles, in which b is the lighter one.

The four-momentum vector of particle b and B is Lab frame is

*
E vq — vBk cos B, E
P, = (Pz ) = ()/Bq — yk cos 9cm> = (p cos 9) A ch
Pxy ksin8., psinf > @
a
E' yQ + yBk cos 6., E’'
Pp=|p: |= (yﬁQ + vk cos ch> =|(p'cosb b
pJ,Cy _k sin gcm p’ sin 6
Where
2 2 1o 2 2
q= |mj+k ——(Et +my —mg
2E,
2 1 2 2 2
Q= _|m:+k?==—(E?—m}+m}
2E,
k2 = 1 E2 2y (g2 2
_4_EtZ( £ — (my + mp)*)(Ef — (M, —mp)*)

M2 = E? =2mg(my + T) + m2 + m5 = (mg + my)? + 2m,T

_Jmy + T2 —m3 1

mg+my+T ' 4 [1— B2

In here g (Q) is the total energy of particle b (B) in the CM frame, 8., is the center of mass scattering
angle. k is the momentum of particle b or B in the CM frame. E; is the total energy in the CM frame, or
the total mass of the system M.. T is the total kinetic energy of particle A in the Lab frame. 8 is the
Lorentz boost from the CM frame to the Lab frame, and y is the Lorentz parameter from (. The
momentum of the particle b, in term of lab angle 6, is:

|4
cos @
—__ Ccostu k2 + (k2 — g282)y2tan2 6 ),
p 1+y2tan29(qﬁ+\/ + (k2 = ¢*f%)y? tan?9)
sin 8 1 ksin@
tanf., = pT tan = ———
ﬂq—?cose Y Bq — k cos O,

Special case: the (d,p) reaction at low energy

In a (d,p) reaction, let’s make an approximation that my~A m,, m,~2m,, my~m,, mg~(4A + 1)m,,
and T~A t m,, where t is in MeV/m,,, for 10 MeV/u, t~ 0.01. The lab angle for the light particle
approximates to
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Figure 1 The relation between 6., and 8,y for simple approximate for the (d,p) reaction.

The 6,4 (or simply 8) is approximately 2 times than 6, for 8., < 20°.

HELIOSmatics

Using this four-momentum vector, we are going to give out the formula that use in HELIOS. The most
representation plot is the e — z plot (Figure 2), where the kinetic energy versus position along the HELIOS
axis. A typical plot like this:
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Figure 2 The black curve is the lower or upper bound of the energy or 8.,, = 0. The red line the locus for fixed
excitation energy (constant E,, line). The blue line is the line for 6., = /2, and the green curve is constant 8., or

T — O
The basic formula is the cyclotron radius
_ P
P=zp

where P is momentum in MeV/c that perpendicular to the magnetic field B (in T), Z is the charge state,
¢ = 299.792458. the unit of p is meter. Under the kinematics of transfer reaction

_ DPxy _ksinOy
P=czB~ " czB

The time for a cycle is

2np  2m ksin@,.,
v, c¢ZB v,

The time for a cycle is almost fixed. Thus the length for a cycle is

N L[ A vy _ 1
Zo=nt= npvl_cZBvl Sttt Yem v, tanf
Zy = 2T d —Z—n
0 tan6 _ cZB'*

cZB

az=p,=yLq—ykcosl.,, a=¥

With the energy equation, we have 2 coupled equations (master coupled equations):

az=yLq—ykcosO.,
e+my =yq —yBkcosb.py

By eliminate difference variable, we can get all difference curves or line.



Cyclotron period

t_an_ 2w ksinB., 2w
v, c¢ZB v, _CZBmYL

The k sin(6,,) is same as the perpendicular component of the momentum in the Lab frame, i.e. py.,.

Pxy =PL =mMVyY]

Where vy, is the Lab frame Lorentz gamma.

The constant E,, line
First, by eliminating cos 8., in the master coupled equations, we get the red line in Figure 2, which only
depends on excitation energy

M2 +m2 —m3 cZB

e yq my, + afz 2V E, my = Bz

The intercept of the red line is

M2 +m2 —m3

€y = ZyEt —my

The only non-constant is mg, which can be excited. Let examine the term, for E,, < mp
mg  (mp+E)?  mj 2Ey mg  mg
125 2
2YE; 2YE; 2YE; 2YE,  YE,

mp
At small incident energy, M, = m, + mp + T¢py ® mp, ¥y = 1,

_MZ +mf —mg

ey = —my — E
second, we can also eliminate e, so that,
cos B, = B—q — iZ
cm k yk

This is the center-of-mass-angle to z-position relationship. The dependency of the excitation energy is
inside the term q.

The constant 8, line
Next, we eliminate mg from the master coupled equations. Notice that my is implicitly contained inside
k = k(mg), we have a complicated curve



—sin%(0,,) afy?z + cos Oy, \/azzz + mZ(1 —sin?(Ocp) ¥2)

= —my +
¢ Mo 1 —sin?(0,,) v?

This is a general contour for a given 8.,,,. When 6,,,, = 0, it reduces to

e=-my,+ /0{222 + m}

This is the black curve in Figure 2. When 6, = %,

a
e=—-my,+—-z

B

This is the blue line in Figure 2.

The Bore radius line
Since the detector may have maximum radius R, and 2p < R. Thus,

ksinf., R ) cZB
W E=>k51n90=RT=RaT[

IA

p=
Put in the 2 coupled equations:

az=ypq—yyk*— (Ram)?
e +my, =yq —yByk* — (Ram)?

Expand in recoil mass mg,

1
K = 2 (BF = (my + mp)?) (EE = (my, = mp)?)
t

1 1
az=ypyp (B +mf—m3)—y J@ (B2 = (my +mp)?) (B2 = (m, = mp)?) = (Ram)?
t t

1

AE2 (B¢ — (mp + mp)*)(EZ — (mp — mp)?) — (Ram)?
t

1
e+mbzyﬁ(Etz+mlza_m§)_yﬁ\j
t

Eliminate mp

2mpe + e? = a?(n?R? + z?)

e= \/az(anz +2z2) +mi —m,

Compare with the constant 6.,,, = 0 line

e= ’a222+m12,—m,2,



The

Maximum excitation energy
We can see that, when the excitation energy of particle B is higher, the red line shifts lower, there is an
upper limit for the red line to be shifted, which is when the red line touches the black curve.

Y
(emax: Zmax) =\mpYy — mb:?mb

Solve for the maximum mp

mp(max) = M, —my, =/ (mg + my)? + 2m,T — m,

Which make perfect sense in CM frame. At non-relativistic limit,

mp(max) = /(mg + my)? +2m,T —my, > mg +m +m—a—m =Q+m +m—aT
B a A a b a A mg +my b B mg +my

m,T
Ex(max) =Q+———=Q + Ty,
mg +my
Where T,,, is the CM frame kinematics energy.

Minimum Incident energy
The minimum incident energy requires that

M, =>my +mg = (mg + my)? + 2my Ty = (my, + mp)?

(my, +mg)? — (mg + my)? _

=—Q(1+$—‘:)¢Q

Tmin -

2mg

Tilted Reaction
When the incident particle with some incident angle 8,4, the four-momentum of particle b will be tilted

by angle 8,
E 1 0 0 yq — yBk cos 6.,
P, = ( Pz ) = (O cosf, —sin 9A> (yﬂq — vk cos 9cm>
Pxy 0 sinfy cosfy, ksin@.,

Since the z-position is

az=p, = Bq—ykcosb.y,)cosb + ksin(b,) sinb,
With the energy

e+m=q—yBkcosl.y

Eliminate 8.,,, we got
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In the above plot, the orange line is the normal constant E, line, the green curve is 84, = 50 mrad, and
the red curve is 84 = —50 mrad. 50 mard ~ 2.9 deg. And the blue curve is with finite detector
correction, such that a = 0.01 meter. The reaction is 208Pb(d,p) at 10 MeV/u, magnetic field is 2.85 T.

In this calculation, we can see the finite emittance of the beam could contribute a lot to the energy
resolution.

Alpha Source

When alpha source is put at the axis, the 4-momentum is

P = (E,ps Pxy) E=m,+T, p, =pcosb, p =+2m,T + T?
Under a magnetic field, the bending radius is

P

P=zB

where P is momentum in MeV/c that perpendicular to the magnetic field B (in T), Z is the charge state,
¢ = 299.792458. The unit of p is meter

__ psinf

P="zB"

The time for a cycle is



2np  2m psinf

t = =
v, c¢cZB v,
Thus the length for a cycle is
=2 vy 21 vy g — 0 v 1
Z=nt= npvl_cZBvlpsm ~zpP Y v, tané
_ 21 0
Zy = 7B p cos
The locus is
. 9 Z .
. sin (tan( )E - qb) + sin ¢
(y) =P z
o (cos (tan(e) E — qb) — cos (j))
Where o0 = +1 when B-field is parallel with the z-axis for positive charged particle. ¢ = —1 when the B-

field is anti-parallel.

The radius is

r=4x2+y?%= \/Ep\]l — cos (tan(e)g)

Finite axial detector

A finite axial detector is a polygonal prism that surrounded and centered the HELIOS axis and larger than
the beam size. The blue circle is the XY projection of the particle trajectory. The orange line is one of the

detector plans.
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For am axial detector, the normal of a plane is

n= (cos ¢p,sing,, 0)
The equation for the detector plane is

xcos¢, +ysing, =a
Where a is the shortest distance from the plane to z-axis.

The equation of the locus of the positive charged particle, when the B-field is direct to the z-axis, is
z
sin (tan(@) ; -0 cp) —osing
z
o (cos (tan(e) E -0 (,b) — cos cp)

Where (6, ¢) is the scattering angle of positively charged particle b, ¢ is the +1 for B-field along z-axis, -1
for B-field against z-axis.

Define A = ¢ — ¢, the hit points are

Zpit = ﬁ (aAqb +nm+ (=1)"sin?! (% — osin(Aqb))),n =01,2...

For real solution,
a
-1< ; —osin(A¢) <1

Notice that, the length for a cycle is

_2mp
%= tan(@)

Zpit = ZZ—; (aAq.') +nm + (—1)"sin™?! (% -0 sin(Aqb)))

Since we want the know which hit-point is hit from outside, i.e. the direction of the particle is toward
the axis, not outward from the axis.

The direction vector for the particle is

z
i(x)  on cos (tan(@)’[—) — 0(1))
&z \y) = pran@®| z
o sin (tan(@) ; — qu)
The dot product with the plane normal

cos ' = ptan(8) cos (tan(@) % - aAcp) <0

= cos (tan(@) % — aA(,b) <0

11



In fact, using geometrical argument, for n = odd number, the hit point is always inward. Substitute z;;

cos (nn + (—1)"sin™? (% -0 sin(Ad))))
= (—1)"cos (sin_1 (% -0 sin(Ad))))

= (—1)71\]1 — (% — Jsin(A¢>))2 <0

This prove the geometrical argument that n = odd.

A special case for¢ = 0,9, =m,n =1

o =t () =i~ ()

The rotated angle is smaller then 2rt. When p > a

1la
Znit ® Zo (1 - %’[—))

With the transfer reaction
The red line becomes

aa

=

aﬁzhuz<(m+e>—§> 1-

When e become large, the sin_l() becomes small, and the formula becomes to normal one.

_ q B Braa
@z = <y V) <1 VY2B2k? — (yq — y)2>

12
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Off-axis Effect
When the helix of particle b is off-axis.

() =+

The solution for z;;; becomes

sin (tan(@) % + ¢>) —sing cos b
cos ¢ — cos (tan(g) '[Z_) + ¢) + po <sin ¢§)

a—po COS((IDO - ¢p)
p

g =P
Rt tan(9)

((;bp —¢+nm+ (—1)"sin™? ( + sin(¢ — (},’)p))),n =012 ...

Forn = 1,¢p =m,¢=0

_ < 1 <a + po C05(¢0)>) a + po cos(¢)
Zpit = Zp| 1 —=—sin"" | ——) |, _

p

<1

21 p

We can see, the effect is same as change of the effective a.rr = a — pg cos(qbo - qbp). Also the beam
size must be smaller than the detector distance p > a > p, cos(qbo - qbp).

Radial Detector (no conclusion yet)

A radial detector is a plane detector located at fixed z-pos (zg) and perpendicular to HELIOS axis. The hit
position with an off-axis helix is

13



I R e T
cos ¢ — cos (tan(@) ?R + ¢) sin ¢

For py = 0, the radial position is

r= xZ +y2 =pJ2—2COS(tan(9)Z’7R>

DPxy ksinBgy Dxy tan(0)zz cZB
p= = , tanf = —, = ZR
cZB cZB Pz p Pz

Since the z-pos is fixed, the TOF from target to the detector is

‘= zp zZp E
vZ c pZ
Eliminate the k cos 8., in p,, we have
ct
e+m= 1
y fzg —ct

Knockout reaction

The reaction is notated as A(a, 12)B, where A =B + b, in which b is the bounded nucleus, and 1 and 2 are
free scattering particles. When particle b knocked out, it becomes particle 2. The energy and
momentum conservation is

Py + P, =P, + P, + Ppg
In which the mass of particle B is
mp+my, =my+S
The reaction Q-value is
Q=my+mg—my —my;—mg=-S§

The recoil of the particle B assumed the form

P = (g, =) = (O =g 4572+ 652

Where S is separation energy, k is the recoiled momentum, which is same but opposite direction with
the bounded nucleus b, as particle A is stationary.

Assume a is the incident particle and A is the target, We can from a quai-particle b by

]P)b=]P)A_]PB

14



- —s 2 —
]Pb = (mb,kb) :<mA—J(mA_ma+S)2+|kb| ,kb>
Thus, the rest is similar to that of transfer reaction, except the target is also moving.

Because the “target” b and incident particle a are both moving, this forms the plane of incident channel.

And the exit channel, the particle 1 and 2 can be not on the same plane. The following illustration is
normal kinematics.

Before Scattering

2 N ’[‘
A(a,12)B < o
A =B+b
a=>1
b=>2 ,
\_ //
After Scattering Nucleon-Nucleon C.M. Frame

T, 0,6 Onn
scattered o /\/Y

proton 01\ 0 \l/ < o
o

Knockout

proton /
O 6.0, kg = —ky

Once the quasi-particle is constructed, the reaction is reduced to
]Pa + ]Pb = ]Pl + ]P)z

Thus, the next step of calculation is identical to transfer reaction. The reaction constants are

kq +kp 1

, Y =—7/—7—
Ea+ Ep NETE

|2

g =

E, =J(Ea+Eb)2+|k_a’+k_b’

1
K = o (BF = (my + m)?) (B} = (my —m;)?)
t

15



in above, E is the Lorentz boost to NN-CM frame. E; is the total energy in NN-CM frame, or the intrinsic
total energy of NN-system. k is the magnitude of momentum of the scattered particle 1 and 2 in NN-CM
frame.

Since the Lorentz boost of from the Lab frame to the NN-CM (nucleon-nucleon center of mass) frame is
not on the z-axis, the formula for the particle 1 and 2 is complicated. In the NN-CM frame, the four-

vector for particle 1 is
E /m% + k?
]Pl =| Pz =

B k cos@

p
il ksin@

Where 0 is not the CM frame scattering angle, because the particle a could has some finite polar angle.

Inverse Kinematics

In inverse kinematics, the momentum k_a) = 0, that simplify the calculation that, the reaction is a tilted
transfer reaction, i.e. the reaction axis is not on the z-axis.

Reconstruct scattered four-momentum
In knockout experiment, we need to reconstruct the four momenta. Under HELIOS, to problem is
converting zp;; to 6;, the lab angle.

Inverse Problem

We show that the solution from CM frame to Lab frame, or from theory to experiment. Basically, the
HELIOS is a problem of finding the mapping

In term of E, and cos 0.,
We can express (z, e) in term of (E,, 6.,,) as

(e) Y (Mg + mIZJ - (mB + Ex)z - ﬁ Cos ecm \/(Mg - (m +mp + Ex)z)(Mg - (m -M - Ex)2)>

z - Z_Et ﬁ(Mg + mlzy - (mB + Ex)z) — COS ecm \/(Mc? - (m + M+ Ex)z)(M? - (m -M - Ex)z)

The inverse

16



Ex —me Tt J M¢ +mj; — 2yM.(E — afz)
<COS 9”") B y(EB —az)
Fe-arm )

Get k and 8., from e and z
From experiment, we get the energy (y = e + m) and position (z), then we can reconstruct the reaction
constant k and 0,,,.

k? =y*(y — Baz)? - m?

0 _(az—Ppy) yvm*+k?—y
OSTem =T T vBk

From k?, the total mass of the particle B is

mi =m2 + M? — 2M, /k2+m§

Where M, is the total mass of the system.

Finite detector
The coupled solution is

y=e+m=yym?+k?—yBkcosb.,

ksinb., ksinf.,

P="wB ~  2na

afyz = (yy —Jm?+ kz) (1 - %%)

Solve cos @ from 1%t equation, and sub into 2" equation,

afyz = (yy —Jm?+ kz) /1 — Praa \
(2 TR =y~ iy - /

Use

I
k - mtan(x), 0<x<§

Byaa )
J2yymsec(x) — y2 — m?y2 — m2 tan2(x)

apyz = (yy — msec(x)) (1 -

17



Under the square root,

2yymsec(x) — y? — m?y? — m?sec?(x) + m?
= —y2y? + 2yymsec(x) — m? sec?(x) + y?y? — y? — m?y? + m?
= —(yy —msec(x))* + (y* —m?)y?p>

Than

Byaa >

afyz = (yy — msec(x)) <1 - JOZ —m2)y2p% — (yy — msec(x))?
Replace

yy —msec(x) - K
? —-m?)y?p? > H? >0

afyz - Z
Byaa - G >0
Z=K(1—L)
Nrore
Next, replace
K - Hsing, —=<¢p<=

or

The momentum square is
k? = (yg — Hsin¢)? — m?
Whena - 0,6 - 0

Z =Hsing = K =yy —msec(x)
- afyz =yy —m? + k?

1
-y =;\/m2 + k% + apz
Or
k* =y*(y — az)* —m?
Return to the infinite detector solution.

. G
Since H,G > 0, and G < H, as the term — =2 <1
H?-K? 2mp

The function

18



f(¢p) =Hsing — G tan ¢

Looks like this

o
T

o
T

Where the orange line is the f(¢) and the blue line is f(¢p) = Z. We can see, there are multi-solution
for ¢. Normally, when 8., > 0, the derivative is

f'(¢) =Hcosp —Gsec’p >0
From experience (need proof), f'(¢) > 0 is the correct solution for most of the case.

Only when the 8., is too small, so that the e-z line bended so much. In the following plot, the E, €
(0,15) MeV, 0., € (0°,60°). There is region where double solution exists, in that case, at the boundary
that manifold is folded, the proper solution takes f'(¢) < 0,¢ Z > 0.

208Pb(d.p) @ 8 MeV/u
——

™T T T T T T

e [MeV]
o

-400 =200 0 200 400 600
z [mm]

It seems (Need proof) that the fold happens when

19



V2B%k? —(yq —y)* =0
To numerically find the solution, a newton’s method is adequacy.

_ . fl)
¢i+1 - ¢L f,(¢1)

Appendix

Lorentz Transform with boost E

]P=(€)—>]P>’=< YE+7vpB -k >=( yE+yBk€059 )
VEB+k+ (y — 1)(BE)B (yBE + vk cos0)p + ksinf 7

where § L A,

Kinematics of 2-body scattering
Suppose the reaction is labeled as b(a,1)2, where a1, b=>2 after scattering. The four momenta of the

incident channel are
/ 2 2
ms + k m
P, = a a, P, = ( _>b)

The center of mass 4-vector is

The system massis M, = E? — k2 = \/mé +m§ + 2myJmg + ki

The Lorentz boost vector is

.k, E. . kg
ﬁ:—’ Y =7, yﬁ:_
c MC MC

The system undergoes a Lorentz boot, so that the total momentum from 0to E; = yﬁMc, to see that, in

the CM frame,
[P)/_<VEC_V.B'ka>_< c)
c — - —_— - g
_VﬁEc + Vka 0

2

" k
VEC_Vﬁ'kaZVEC_VE_azE_(M?)=Mc
c c

where

20



In CM frame,

v ma+ki—vB kg ymy
e 55

- — ’ - _)m
—yB |m2 + k2 + vk, vhmy

V,’m(21+k§_yﬁ'ka+ymbZVEC_Vﬁ'kaZMC

Check the energy part

The momentum part
—yB |mé + k& +vka —yBmy = yBE. +vky =0

After the scattering, only direction changed.

1
4M2

p* =

(MZ — (my + my)*)(MZ — (my —my)?)

The 4-momenta

2 2 2 2
P, mi+p ’ P, = m; +p
P —p

Return to the Lab frame

V/mf+p2+yﬁ-ﬁ V/m%+p2—yﬁ-ﬁ
P

P] = ,
vy mi+p2B+5+ @ -1 5B vy mi+p2f-5-@ -1 p)B

The momentum part can be rewritten using f - = p cos 6

% ’mf+p2+yﬁpc056’ % ’m§+p2—yﬁpc056’

]P'1= ’]P?'2=
<yﬁ m%+p2+ypcost9>ﬁ+psin6’ l <yﬁ m§+p2—ypcost9>,[;’—psin6’ l

where § L A,

The total energy must be conserved,

E1+E2=y\/mf+p2+y\/m%+p2=\/m,21+k§+mb

The opening angle

21



kik, cos 6, = <yﬁ m? + p? + yp cos 9) (yﬁ m3 + p? — yp cos 6) —p?sin? 6

Assume the masses of 1,2 are equal the masses of a, b
After the scattering, only direction changed. Also, we can check the momentum formula

1 ?
pz = 4M?2 (Mc? - (ma + mb)z)(Mg - (ma - mb)z) - ]/ZBZmﬁ
c

Each term,
M2 — (mg + mp)? = m2 + mZ + 2my,_[m2 + k2 — (mg + my)? = 2m,, /m(zl + k2 — 2m,m,

M? — (mg — mp)? = m2 + mZ + 2my, [m2 + k2 — (mg — my,)? = 2m,, ’mfl + k2 + 2m,m,,

ka

2 —_— =
2
WE

1
p? = (4mi(mZ + k) — 4mimj) = mj

202..,2

Assume the mass of a and b are the same
Suppose the massesm, = m, =m =my; = m,

ym?+kZ—yB kg ym
(" - ()

' —yBm

-

—yB m? + kZ + vk,

MZ
pZ — TC_ mZ — YZIBZmZ — Mg — 4(V2ﬁ2 + 1)m2 — 4]/27712

M. =2ym

As we expected, as the particle a and b should share equal energy in CM frame, i.e.

y [m?+ 1 v kg =ym
Which can be obtained using
2
m? = <y /mz +ki-vB- ka) —y*p*m?

The scattered 4-momenta in CM frame are

22



In Lab frame,
P _< y’m+yB-p > P _< y’m—vyB-p >
1~ =4 - A \NA 1’ - =4 - A >\ A
v pm+p+ G —D(B p)B v pm—p— @ -1(B-P)B
The momentum part can be rewritten using f - = p cos = yfmcos @
y2Bm+ B+~ D(B-B)B = (r*Bm+ypcos6)B +psin6 A
Where § 1 1.
P — y2m(1 + B?cos ) p. - y*m(1 - p?cos9)
YT \y2Bm@1 + cos6)B + psind A)’ 27 \y2Bpm(1 — cos ) —psin® A
When scattering angle 8 = 0
2 2
vy m(1l+ ) m
= (00 ) R ()
2y“mp
Check:

Y'm(1+p3)=y’m+ @2 -1m=2y’m-m=yM,—-m=E,.—m= /m2+k§

—

2y2mf =2 mE=F
14 14 M, a

The total energy or energy conservation,
Ei+E, =y?*m(1+ f?cos8) +y?m(1 — B2%cos ) = 2y*m = E,
The opening angle

kik,cos6;, = y*B*m?sin? @

Assume the mass of 1 and 2 becomes equal after scattering
Suppose the mass becomes m, the momentum is

M2 1
p2=T—m2=Z m2 +m2 + 2my, [m2 + k2 — 4m?

Me Me
Pi=|2 | Py=|2
p —p

23



]P)1=

(

Opening angle

_VFM:

YBM,
2

4

YM

c

——+yBpcosf

2

—+ypc056’>,[§+psin9ﬁ

2
Cc

1

22
M
L _ VZ'BZPZ COSZ 6 — pZ

klkZ COS 912 = 4

_ yzﬂzpz cos2 6 — pz —

M,
%—yﬁpcose
P, =
27\ (vBM, 5 o
T—ypcos B —psinfn

2
c

2 ZMZ MZ
yéTC_TC_}_mz —yzﬂzpz cos? 6
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