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Transfer Reaction 
The kinematics of transfer reaction, denote as A(a,b)B, where A is incoming particle with larger mass, a 

is target nucleus, b and B are scattered particles, in which b is the lighter one. 

 

The four-momentum vector of particle b and B is 

ℙ𝑏 = (

𝐸
𝑝𝑧
𝑝𝑥𝑦
) = (

𝛾𝑞 − 𝛾𝛽𝑘 cos𝜃𝑐𝑚
𝛾𝛽𝑞 − 𝛾𝑘 cos𝜃𝑐𝑚

𝑘 sin 𝜃𝑐𝑚

) = (
𝐸

𝑝 cos 𝜃
𝑝 sin 𝜃

) 

ℙ𝐵 = (

𝐸′

𝑝𝑧
′

𝑝𝑥𝑦
′
) = (

𝛾𝑄 + 𝛾𝛽𝑘 cos 𝜃𝑐𝑚
𝛾𝛽𝑄 + 𝛾𝑘 cos 𝜃𝑐𝑚
−𝑘 sin𝜃𝑐𝑚

) = (
𝐸′

𝑝′ cos 𝜃

𝑝′ sin 𝜃
) 

Where 

𝑞 = √𝑚𝑏
2 + 𝑘2 =

1

2𝐸𝑡
(𝐸𝑡

2 +𝑚𝑏
2 −𝑚𝐵

2) 

𝑄 = √𝑚𝐵
2 + 𝑘2 =

1

2𝐸𝑡
(𝐸𝑡

2 −𝑚𝑏
2 +𝑚𝐵

2) 

𝑘2 =
1

4𝐸𝑡
2
(𝐸𝑡
2 − (𝑚𝑏 +𝑚𝐵)

2)(𝐸𝑡
2 − (𝑚𝑏 −𝑚𝐵)

2) 

𝑀𝑐
2 = 𝐸𝑡

2 = 2𝑚𝑎(𝑚𝐴 + 𝑇) +𝑚𝑎
2 +𝑚𝐴

2 = (𝑚𝑎 +𝑚𝐴)
2 + 2𝑚𝑎𝑇 

𝛽 =
√(𝑚𝐴 + 𝑇)

2 −𝑚𝐴
2

𝑚𝑎 +𝑚𝐴 + 𝑇
, 𝛾 =

1

√1 − 𝛽2
 

In here 𝜃𝑐𝑚 is the center of mass scattering angle. 𝑘 is the momentum of particle b or B in CM frame. 𝐸𝑡 

is the total energy in CM frame, or the mass of the system 𝑀𝑐. 𝑞 is the total energy of particle b in CM 

frame. 𝑇 is the total kinetic energy of particle A.  

𝑝 =

𝛾
cos𝜃

1 + 𝛾2 tan2 𝜃
(𝑞𝛽 + √𝑘2 + (𝑘2 − 𝑞2𝛽2)𝛾2 tan2 𝜃) 

tan 𝜃𝑐𝑚 =
𝑝 sin 𝜃

𝛽𝑞 −
𝑝
𝛾 cos𝜃

 

Using this four-momentum vector, we are going to give out the formula that use in HELIOS. The most 

representation plot is the e – z plot, where the kinetic energy versus position along the HELIOS axis. A 

typical plot like this: 



 

The black curve is the lower or upper bound of the energy. The red line the locus for fixed excitation 

energy. The blue line is the line for 𝜃𝑐𝑚 = 0, and the green curve is constant 𝜃𝑐𝑚 or 𝜋 − 𝜃𝑐𝑚 . 

The basic formula is the rotation radius 

𝜌 =
𝑃

𝑐𝑍𝐵
 

where 𝑃 is momentum in MeV/c that perpendicular to the magnetic field 𝐵 (in T), 𝑍 is the charge state, 

𝑐 = 299.792458. the unit of 𝜌 is meter. Under the kinematics of transfer reaction  

𝜌 =
𝑝𝑥𝑦

𝑐𝑍𝐵
=
𝑘 sin 𝜃𝑐𝑚
𝑐𝑍𝐵

 

The time for a cycle is  

𝑡 =
2𝜋𝜌

𝑣⊥
=
2𝜋

𝑐𝑍𝐵

𝑘 sin𝜃𝑐𝑚
𝑣⊥

 

The time for a cycle is almost fixed. Thus the length for a cycle is  

𝑧0 = 𝑣∥𝑡 = 2𝜋𝜌
𝑣∥
𝑣⊥
=
2𝜋

𝑐𝑍𝐵

𝑣∥
𝑣⊥
𝑘 sin𝜃𝑐𝑚 ,

𝑣∥
𝑣⊥
=

1

tan𝜃
 

𝑧0 = 2𝜋
𝜌

tan𝜃
=
2𝜋

𝑐𝑍𝐵
𝑝𝑧  

𝛼 𝑧 = 𝑝𝑧 = 𝛾𝛽𝑞 − 𝛾𝑘 cos 𝜃𝑐𝑚 , 𝛼 =
𝑐𝑍𝐵

2𝜋
 

With the energy equation, we have 2 coupled equations: 

𝛼 𝑧 = 𝛾𝛽𝑞 − 𝛾𝑘 cos 𝜃𝑐𝑚 

𝑒 + 𝑚𝑏 = 𝛾𝑞 − 𝛾𝛽𝑘 cos𝜃𝑐𝑚 

By eliminate difference variable, we can get all difference curves or line.  

 



The constant 𝐸𝑥  line 
First, by eliminating cos 𝜃𝑐𝑚, we get the red line, which only depends on excitation energy 

𝑒 =
1

𝛾
𝑞 −𝑚𝑏 + 𝛼𝛽𝑧 =

𝑀𝑐
2 +𝑚𝑏

2 −𝑚𝐵
2

2𝛾𝐸𝑡
−𝑚𝑏 +

𝑐𝑍𝐵

2𝜋
𝛽𝑧 

The intercept of the red line is 

𝑒0 =
𝑀𝑐
2 +𝑚𝑏

2 −𝑚𝐵
2

2𝛾𝐸𝑡
−𝑚𝑏 

The only non-constant is 𝑚𝐵, which can be excited. Let examine the term, for 𝐸𝑥 ≪ 𝑚𝐵  

𝑚𝐵
2

2𝛾𝐸𝑡
→
(𝑚𝐵 + 𝐸𝑥)

2

2𝛾𝐸𝑡
≈
𝑚𝐵
2

2𝛾𝐸𝑡
(1 +

2𝐸𝑥
𝑚𝐵
) =

𝑚𝐵
2

2𝛾𝐸𝑡
+
𝑚𝐵
𝛾𝐸𝑡

𝐸𝑥 

At small incident energy, 𝑀𝑐 = 𝑚𝑏 +𝑚𝐵 + 𝑇𝑐𝑚 ≈ 𝑚𝐵, 𝛾 ≈ 1,  

𝑒0 ≈
𝑀𝑐
2 +𝑚𝑏

2 −𝑚𝐵
2

2𝛾𝐸𝑡
−𝑚𝑏 − 𝐸𝑥  

 

second, we can also eliminate 𝑒, so that,  

cos 𝜃𝑐𝑚 =
𝛽𝑞

𝑘
−
𝛼

𝛾𝑘
𝑧 

This is the center-of-mass-angle to z-position relationship. The dependency of  the excitation energy is 

inside the term 𝑞. 

 

The constant 𝜃𝑐𝑚 line 
Next, we eliminate 𝑚𝐵, notice that 𝑘 = 𝑘(𝑚𝐵), we need to eliminate that as well, we have a 

complicated curve 

𝑒 = −𝑚𝑏 +
−sin2(𝜃𝑐𝑚)𝛼𝛽𝛾

2𝑧 + cos𝜃𝑐𝑚√𝛼
2𝑧2 +𝑚𝑏

2(1 − sin2(𝜃𝑐𝑚) 𝛾
2)

1 − sin2(𝜃𝑐𝑚) 𝛾
2

 

This is a general contour for a given 𝜃𝑐𝑚. When 𝜃𝑐𝑚 = 0, it reduces to 

𝑒 = −𝑚𝑏 +√𝛼
2𝑧2 +𝑚𝑏

2 

This is the black curve. When 𝜃𝑐𝑚 =
𝜋

2
, 

𝑒 = −𝑚𝑏 +
𝛼

𝛽
𝑧 

This is the blue line. 



 

The Bore radius line 
Since the detector may have maximum radius 𝑅, and 2𝜌 ≤ 𝑅. Thus, 

𝜌 =
𝑘 sin 𝜃𝑐𝑚
𝑐𝑍𝐵

≤
𝑅

2
⇒ 𝑘 sin 𝜃0 = 𝑅

𝑐𝑍𝐵

2
= 𝑅𝛼𝜋 

Put in the 2 coupled equations: 

𝛼 𝑧 = 𝛾𝛽𝑞 − 𝛾√𝑘2 − (𝑅𝛼𝜋)2 

𝑒 + 𝑚𝑏 = 𝛾𝑞 − 𝛾𝛽√𝑘
2 − (𝑅𝛼𝜋)2 

Expand in recoil mass 𝑚𝐵,  

𝑘2 =
1

4𝐸𝑡
2
(𝐸𝑡
2 − (𝑚𝑏 +𝑚𝐵)

2)(𝐸𝑡
2 − (𝑚𝑏 −𝑚𝐵)

2) 

𝛼 𝑧 = 𝛾𝛽
1

2𝐸𝑡
(𝐸𝑡

2 +𝑚𝑏
2 −𝑚𝐵

2) − 𝛾√
1

4𝐸𝑡
2
(𝐸𝑡
2 − (𝑚𝑏 +𝑚𝐵)

2)(𝐸𝑡
2 − (𝑚𝑏 −𝑚𝐵)

2) − (𝑅𝛼𝜋)2 

𝑒 +𝑚𝑏 = 𝛾
1

2𝐸𝑡
(𝐸𝑡

2 +𝑚𝑏
2 −𝑚𝐵

2) − 𝛾𝛽√
1

4𝐸𝑡
2
(𝐸𝑡
2 − (𝑚𝑏 +𝑚𝐵)

2)(𝐸𝑡
2 − (𝑚𝑏 −𝑚𝐵)

2) − (𝑅𝛼𝜋)2 

Eliminate 𝑚𝐵 

2𝑚𝑏𝑒 + 𝑒
2 = 𝛼2(𝜋2𝑅2 + 𝑧2) 

𝑒 = √𝛼2(𝜋2𝑅2 + 𝑧2) + 𝑚𝑏
2 −𝑚𝑏 

Compare with the constant 𝜃𝑐𝑚 = 0 line 

𝑒 = √𝛼2𝑧2 +𝑚𝑏
2 −𝑚𝑏

2 

The  

 

Maximum excitation energy 
We can see that, when the excitation energy of particle B is higher, the red line shifts lower, there is an 

upper limit for the red line to be shifted, which is when the red line touches the black curve.  

(𝑒𝑚𝑎𝑥, 𝑧𝑚𝑎𝑥) = (𝑚𝑏𝛾 −𝑚𝑏 ,
𝛾𝛽

𝛼
𝑚𝑏) 

Solve for the maximum 𝑚𝐵
′  

𝑚𝐵(max) = 𝑀𝑐 −𝑚𝑏 = √(𝑚𝑎 +𝑚𝐴)
2 + 2𝑚𝑎𝑇 −𝑚𝑏 

Which make perfect sense in CM frame. At non-relativistic limit, 



𝑚𝐵(max) = √(𝑚𝑎 +𝑚𝐴)2 + 2𝑚𝑎𝑇 −𝑚𝑏 → 𝑚𝑎 +𝑚𝐴 +
𝑚𝑎𝑇

𝑚𝑎 +𝑚𝐴
−𝑚𝑏 = 𝑄 +𝑚𝐵 +

𝑚𝑎𝑇

𝑚𝑎 +𝑚𝐴
 

𝐸𝑥(max) = 𝑄 +
𝑚𝑎𝑇

𝑚𝑎 + 𝑚𝐴
= 𝑄 + 𝑇𝑐𝑚 

Where 𝑇𝑐𝑚 is the CM frame kinematics energy. 

Minimum Incident energy 
The minimum incident energy requires that  

𝑀𝑐 ≥ 𝑚𝑏 +𝑚𝐵 ⇒ (𝑚𝑎 +𝑚𝐴)
2 + 2𝑚𝑎𝑇𝑚𝑖𝑛 = (𝑚𝑏 +𝑚𝐵)

2  

𝑇𝑚𝑖𝑛 =
(𝑚𝑏 +𝑚𝐵)

2 − (𝑚𝑎 +𝑚𝐴)
2

2𝑚𝑎
≅ −𝑄 (1 +

𝑚𝐴
𝑚𝑎
) ≠ 𝑄 

 

Tilted Reaction 
When the incident particle with some incident angle 𝜃𝐴, the four-momentum of particle b will be tilted 

by angle 𝜃𝐴, 

ℙ𝑏 = (

𝐸
𝑝𝑧
𝑝𝑥𝑦
) = (

1 0 0
0 cos 𝜃𝐴 −sin 𝜃𝐴
0 sin𝜃𝐴 cos 𝜃𝐴

)(

𝛾𝑞 − 𝛾𝛽𝑘 cos 𝜃𝑐𝑚
𝛾𝛽𝑞 − 𝛾𝑘 cos 𝜃𝑐𝑚

𝑘 sin 𝜃𝑐𝑚

) 

Since the z-position is 

𝛼 𝑧 = 𝑝𝑧 = (𝛾𝛽𝑞 − 𝛾𝑘 cos 𝜃𝑐𝑚) cos 𝜃𝐴 + 𝑘 sin(𝜃𝑐𝑚) sin𝜃𝐴 

With the energy  

𝑒 + 𝑚 = 𝑞 − 𝛾𝛽𝑘 cos𝜃𝑐𝑚 

Eliminate 𝜃𝑐𝑚, we got 

𝛼𝛽𝑧 = (𝑒 +𝑚 −
𝑞

𝛾
) cos 𝜃𝐴 +

1

𝛾
√(𝛾𝛽𝑘)2 − (𝑞 − 𝑒 −𝑚)2 sin 𝜃𝐴 



 

In the above plot, the orange line is the normal constant 𝐸𝑥 line, the green curve is 𝜃𝐴 = 50 mrad, and 

the red curve is 𝜃𝐴 = −50 mrad. 50 mard ~ 2.9 deg. And the blue curve is with finite detector 

correction, such that 𝑎 = 0.01 meter. The reaction is 208Pb(d,p) at 10 MeV/u, magnetic field is 2.85 T.  

In this calculation, we can see the finite emittance of the beam could contribute a lot to the energy 

resolution.   

Alpha Source  
When alpha source is put at the axis, the 4-momentum is 

ℙ = (𝐸, 𝑝𝑧, 𝑝𝑥𝑦), 𝐸 = 𝑚𝛼 + 𝑇, 𝑝𝑧 = 𝑝 cos 𝜃 , 𝑝 = √2𝑚𝛼𝑇 + 𝑇
2 

Under a magnetic field, the bending radius is  

𝜌 =
𝑃

𝑐𝑍𝐵
 

where 𝑃 is momentum in MeV/c that perpendicular to the magnetic field 𝐵 (in T), 𝑍 is the charge state, 

𝑐 = 299.792458. The unit of 𝜌 is meter  

𝜌 =
𝑝 sin 𝜃

𝑐𝑍𝐵
,  

The time for a cycle is  

𝑡 =
2𝜋𝜌

𝑣⊥
=
2𝜋

𝑐𝑍𝐵

𝑝 sin𝜃

𝑣⊥
 

Thus the length for a cycle is  



𝑧0 = 𝑣∥𝑡 = 2𝜋𝜌
𝑣∥
𝑣⊥
=
2𝜋

𝑐𝑍𝐵

𝑣∥
𝑣⊥
𝑝 sin 𝜃 =

2𝜋

𝑐𝑍𝐵
𝑝 cos 𝜃 ,

𝑣∥
𝑣⊥
=

1

tan𝜃
 

𝑧0 =
2𝜋

𝑐𝑍𝐵
𝑝 cos 𝜃 

The locus is 

(
𝑥
𝑦) = 𝜌(

sin𝜙 − sin (tan(𝜃)
𝑧

𝜌
+ 𝜙)

cos𝜙 − cos (tan(𝜃)
𝑧

𝜌
+ 𝜙)

) 

The radius is 

𝑟 = √𝑥2 + 𝑦2 = √2𝜌√1 − cos (tan(𝜃)
𝑧

𝜌
) 

 

Finite axial detector  
A finite axial detector is a polygonal prism that surrounded and centered the HELIOS axis and larger than 

the beam size. The blue circle is the XY projection of the particle trajectory. The orange line is one of the 

detector plan. 

 

For am axial detector, the normal of a plane is  

�̂� = (cos𝜙𝑝 , sin𝜙𝑝 , 0) 

The equation for the detector plane is 

𝑥 cos𝜙𝑝 + 𝑦 sin𝜙𝑝 = 𝑎 



Where 𝑎 is the shortest distance from the plane to z-axis.  

The equation of the locus of the positive charged particle, when the B-field is direct to the z-axis, is 

(
𝑥
𝑦) = 𝜌(

sin𝜙 − sin (tan(𝜃)
𝑧

𝜌
+ 𝜙)

cos𝜙 − cos (tan(𝜃)
𝑧

𝜌
+ 𝜙)

) 

Where (𝜃, 𝜙) is the scattering angle of particle b. 

The hit points are 

𝑧ℎ𝑖𝑡 =
𝜌

tan(𝜃)
(𝜙𝑝 −𝜙 + 𝑛𝜋 + (−1)

𝑛 sin−1 (
𝑎

𝜌
+ sin(𝜙 − 𝜙𝑝))) , 𝑛 = 0,1,2…. 

For real solution, 

−1 <
𝑎

𝜌
+ sin(𝜙 − 𝜙𝑝) < 1 

Notice that, the length for a cycle is 

𝑧0 =
2𝜋 𝜌

tan(𝜃)
 

𝑧ℎ𝑖𝑡 =
𝑧0
2𝜋
(𝜙𝑝 − 𝜙 + 𝑛𝜋 + (−1)

𝑛 sin−1 (
𝑎

𝜌
+ sin(𝜙 − 𝜙𝑝))) 

Since we want the know which hit-point is hit from outside, i.e. the direction of the particle is toward 

the axis, not outward from the axis.  

The direction vector for the particle is 

𝑑

𝑑𝑧
(
𝑥
𝑦) = 𝜌 tan(𝜃)(

cos (tan(𝜃)
𝑧

𝜌
+ 𝜙)

sin (tan(𝜃)
𝑧

𝜌
+ 𝜙)

) 

The dot product with the plane normal 

cos 𝜃′ = 𝜌 tan(𝜃) cos (tan(𝜃)
𝑧

𝜌
+ 𝜙 − 𝜙𝑝) < 0 

⇒ cos (tan(𝜃)
𝑧

𝜌
+ 𝜙 − 𝜙𝑝) < 0 

In fact, using geometrical argument, for 𝑛 = 𝑜𝑑𝑑 number, the hit point is always inward. Substitute 𝑧ℎ𝑖𝑡 

Cos (𝑛𝜋 + (−1)𝑛 sin−1 (
𝑎

𝜌
+ sin(𝜙 − 𝜙𝑝))) 

= (−1)𝑛 cos (sin−1 (
𝑎

𝜌
+ sin(𝜙 − 𝜙𝑝))) 



= (−1)𝑛√1− (
𝑎

𝜌
+ sin(𝜙 − 𝜙𝑝))

2

< 0 

This prove the geometrical argument that 𝑛 = 𝑜𝑑𝑑.  

A special case for 𝜙 = 0,𝜙𝑝 = 𝜋, 𝑛 = 1 

𝑧ℎ𝑖𝑡 =
𝜌

tan(𝜃)
(2𝜋 − sin−1 (

𝑎

𝜌
)) = 𝑧0 (1 −

1

2𝜋
sin−1 (

𝑎

𝜌
)) 

The rotated angle is smaller then 2𝜋. When 𝜌 ≫ 𝑎 

𝑧ℎ𝑖𝑡 ≈ 𝑧0 (1 −
1

2𝜋

𝑎

𝜌
) 

 

With the transfer reaction 
The red line becomes 

𝛼𝛽 𝑧ℎ𝑖𝑡 ≈ ((𝑚 + 𝑒) −
𝑞

𝛾
)

(

 
 
 

1−
𝛼𝑎

√𝑘2 − (
𝛾𝑞 −𝑚 − 𝑒

𝛾𝛽
)
2

)

 
 
 

 

When 𝑒 become large, the sin−1() becomes small, and the formula becomes to normal one.  

𝛼𝛽𝑧 = (𝑦 −
𝑞

𝛾
)(1 −

𝛽𝛾𝛼𝑎

√𝛾2𝛽2𝑘2 − (𝛾𝑞 − 𝑦)2
) 



 

 

Off-axis Effect 
When the helix of particle b is off-axis.  

(
𝑥
𝑦) = 𝜌(

sin (tan(𝜃)
𝑧

𝜌
+ 𝜙) − sin𝜙

cos𝜙 − cos (tan(𝜃)
𝑧

𝜌
+ 𝜙)

) + 𝜌0 (
cos𝜙0
sin𝜙0

) 

The solution for 𝑧ℎ𝑖𝑡 becomes 

𝑧ℎ𝑖𝑡 =
𝜌

tan(𝜃)
(𝜙𝑝 − 𝜙 + 𝑛𝜋 + (−1)

𝑛 sin−1 (
𝑎 − 𝜌0 cos(𝜙0 −𝜙𝑝)

𝜌
+ sin(𝜙 − 𝜙𝑝))) , 𝑛 = 0,1,2…. 

For 𝑛 = 1, 𝜙𝑝 = 𝜋,𝜙 = 0 

𝑧ℎ𝑖𝑡 = 𝑧0 (1 −
1

2𝜋
sin−1 (

𝑎 + 𝜌0 cos(𝜙0)

𝜌
)) , |

𝑎 + 𝜌0 cos(𝜙0)

𝜌
| < 1 

We can see, the effect is same as change of the effective 𝑎𝑒𝑓𝑓 = 𝑎 − 𝜌0 cos(𝜙0 − 𝜙𝑝). Also the beam 

size must be smaller than the detector distance 𝜌 > 𝑎 > 𝜌0 cos(𝜙0 − 𝜙𝑝). 

 

Radial Detector (no conclusion yet) 
A radial detector is a plane detector located at fixed z-pos (𝑧𝑅) and perpendicular to HELIOS axis. The hit 

position with an off-axis helix is 



(
𝑥
𝑦) = 𝜌(

sin (tan(𝜃)
𝑧𝑅
𝜌
+ 𝜙) − sin𝜙

cos𝜙 − cos (tan(𝜃)
𝑧𝑅
𝜌
+ 𝜙)

)+ 𝜌0 (
cos𝜙0
sin𝜙0

) 

For 𝜌0 = 0, the radial position is 

𝑟 = √𝑥2 + 𝑦2 = 𝜌√2 − 2 cos (tan(𝜃)
𝑧𝑅
𝜌
) 

𝜌 =
𝑝𝑥𝑦

𝑐𝑍𝐵
=
𝑘 sin𝜃𝑐𝑚
𝑐𝑍𝐵

, tan 𝜃 =
𝑝𝑥𝑦

𝑝𝑧
,

tan(𝜃) 𝑧𝑅
𝜌

=
𝑐𝑍𝐵

𝑝𝑧
𝑧𝑅 

Since the z-pos is fixed, the TOF from target to the detector is 

𝑡 =
𝑧𝑅
𝑣𝑧
=
𝑧𝑅
𝑐

𝐸

𝑝𝑧
 

Eliminate the 𝑘 cos 𝜃𝑐𝑚 in 𝑝𝑧, we have 

𝑒 + 𝑚 =
𝑞

𝛾

𝑐𝑡

𝛽𝑧𝑅 − 𝑐𝑡
 

 

Knockout reaction  
The reaction is notated as A(a, 12)B, where A = B + b, in which b is the bounded nucleus, and 1 and 2 are 

free scattering particles. When particle b knocked out, it becomes particle 2. The energy and 

momentum conservation is 

ℙ𝐴 +ℙ𝑎 = ℙ1 + ℙ2 + ℙ𝐵 

In which the mass of particle B is  

𝑚𝐵 +𝑚2 = 𝑚𝐴 + 𝑆 

The reaction Q-value is  

𝑄 = 𝑚𝐴 +𝑚𝑎 −𝑚1 −𝑚2 −𝑚𝐵 = −𝑆 

The recoil of the particle B assumed the form  

ℙ𝐵 = (𝑚𝐵, −𝑘𝑏⃗⃗⃗⃗ ) = (√(𝑚𝐴 −𝑚2 + 𝑆)
2 + |𝑘𝑏⃗⃗⃗⃗ | 

2, −𝑘𝑏⃗⃗⃗⃗ ) 

Where 𝑆 is separation energy, �⃗�  is the recoiled momentum, which is same but opposite direction with 

the bounded nucleus b, as particle A is stationary. 

Assume a is the incident particle and A is the target, We can from a quai-particle b by 

ℙ𝑏 = ℙ𝐴 −ℙ𝐵 



ℙ𝑏 = (𝑚𝑏 , �⃗� 𝑏) = (𝑚𝐴 −√(𝑚𝐴 −𝑚𝑎 + 𝑆)
2 + |𝑘𝑏⃗⃗⃗⃗ |

2
, 𝑘𝑏⃗⃗⃗⃗ ) 

Thus, the rest is similar to that of transfer reaction, except the target is also moving. 

Because the “target” b and incident particle a are both moving, this forms the plane of incident channel. 

And the exit channel, the particle 1 and 2 can be not on the same plane. The following illustration is 

normal kinematics.  

 

Once the quasi-particle is constructed, the reaction is reduced to  

ℙ𝑎 +ℙ𝑏 = ℙ1 + ℙ2 

Thus, the next step of calculation is identical to transfer reaction. The reaction constants are 

𝛽 =
𝑘𝑎⃗⃗ ⃗⃗ + 𝑘𝑏⃗⃗⃗⃗ 

𝐸𝑎 + 𝐸𝑏
, 𝛾 =

1

√1 − |𝛽|2
 

𝐸𝑡 = √(𝐸𝑎 + 𝐸𝑏)
2 + |𝑘𝑎⃗⃗ ⃗⃗ + 𝑘𝑏⃗⃗⃗⃗ |

2
 

𝑘2 =
1

4𝐸𝑡
2
(𝐸𝑡
2 − (𝑚1 +𝑚2)

2)(𝐸𝑡
2 − (𝑚1 −𝑚2)

2) 



in above, 𝛽  is the Lorentz boost to NN-CM frame. 𝐸𝑡 is the total energy in NN-CM frame, or the intrinsic 

total energy of NN-system. 𝑘 is the magnitude of momentum of the scattered particle 1 and 2 in NN-CM 

frame. 

Since the Lorentz boost of from the Lab frame to the NN-CM (nucleon-nucleon center of mass) frame is 

not on the z-axis, the formula for the particle 1 and 2 is complicated. In the NN-CM frame, the four-

vector for particle 1 is 

ℙ1 = (

𝐸
𝑝𝑧
𝑝𝑥𝑦
) = (

√𝑚1
2 + 𝑘2

𝑘 cos𝜃
𝑘 sin𝜃

) 

Where 𝜃 is not the CM frame scattering angle, because the particle a could has some finite polar angle. 

Inverse Kinematics 

In inverse kinematics, the momentum 𝑘𝑎⃗⃗ ⃗⃗ = 0, that simplify the calculation that, the reaction is a tilted 

transfer reaction, i.e. the reaction axis is not on the z-axis.  

 

Reconstruct scattered four-momentum 
In knockout experiment, we need to reconstruct the four momenta. Under HELIOS, to problem is 

converting 𝑧ℎ𝑖𝑡 to 𝜃𝑖, the lab angle.  

 

Inverse Problem 
We show that the solution from CM frame to Lab frame, or from theory to experiment. Basically, the 

HELIOS is a problem of finding the mapping 

(
𝐸𝑥
𝜃𝑐𝑚

) ⟷ (
𝑒
𝑧
) 

 

In term of 𝐸𝑥  and cos 𝜃𝑐𝑚 
We can express (𝑧, 𝑒) in term of (𝐸𝑥 , 𝜃𝑐𝑚) as 

(
𝑒

𝑧
) =

𝛾

2𝐸𝑡
(
𝑀𝑐
2 +𝑚𝑏

2 − (𝑚𝐵 + 𝐸𝑥)
2 − 𝛽 cos 𝜃𝑐𝑚√(𝑀𝑐

2 − (𝑚 +𝑚𝐵 + 𝐸𝑥)
2)(𝑀𝑐

2 − (𝑚 −𝑀 − 𝐸𝑥)
2)

𝛽(𝑀𝑐
2 +𝑚𝑏

2 − (𝑚𝐵 + 𝐸𝑥)
2) − cos 𝜃𝑐𝑚√(𝑀𝑐

2 − (𝑚 +𝑀 + 𝐸𝑥)
2)(𝑀𝑐

2 − (𝑚 −𝑀 − 𝐸𝑥)
2)
) 

The inverse  

(
𝐸𝑥

cos𝜃𝑐𝑚
) =

(

 
 
 −𝑚𝐵 +√𝑀𝑐

2 +𝑚𝑏
2 − 2𝛾𝑀𝑐(𝐸 − 𝛼𝛽𝑧)

𝛾(𝐸𝛽 − 𝛼 𝑧)

√𝛾2(𝐸 − 𝛼𝛽𝑧)2 −𝑚𝑏
2

)

 
 
 

 



 

Get 𝑘 and 𝜃𝑐𝑚 from 𝑒 and 𝑧 
From experiment, we get the energy (𝑦 = 𝑒 +𝑚) and position (𝑧), then we can reconstruct the reaction 

constant 𝑘 and 𝜃𝑐𝑚.  

𝑘2 = 𝛾2(𝑦 − 𝛽𝛼𝑧)2 −𝑚2 

cos𝜃𝑐𝑚 =
(𝛼𝑧 − 𝛽𝑦)

𝛾𝑘
=
𝛾√𝑚2 + 𝑘2 − 𝑦

𝛾𝛽𝑘
 

From 𝑘2, the total mass of the particle B is 

𝑚𝐵
2 = 𝑚𝑏

2 +𝑀𝑐
2 − 2𝑀𝑐√𝑘

2 +𝑚𝑏
2 

Where 𝑀𝑐 is the total mass of the system. 

 

Finite detector 
The coupled solution is 

𝑦 = 𝑒 +𝑚 = 𝛾√𝑚2 + 𝑘2 − 𝛾𝛽𝑘 cos 𝜃𝑐𝑚 

𝜌 =
𝑘 sin𝜃𝑐𝑚
𝑐𝑍𝐵

=
𝑘 sin 𝜃𝑐𝑚
2𝜋𝛼

  

𝛼𝛽𝛾𝑧 = (𝛾𝑦 − √𝑚2 + 𝑘2) (1 −
1

2𝜋

𝑎

𝜌
) 

Solve cos 𝜃 from 1st equation, and sub into 2nd equation,  

𝛼𝛽𝛾𝑧 = (𝛾𝑦 − √𝑚2 + 𝑘2)

(

 1 −
𝛽𝛾𝛼𝑎

√2𝑦𝛾√𝑚2 + 𝑘2 − 𝑦2 −𝑚2𝛾2 − 𝑘2)

  

Use  

𝑘 → 𝑚 tan(𝑥) , 0 < 𝑥 <
𝜋

2
 

𝛼𝛽𝛾𝑧 = (𝛾𝑦 − 𝑚 sec(𝑥)) (1 −
𝛽𝛾𝛼𝑎

√2𝑦𝛾𝑚 sec(𝑥) − 𝑦2 −𝑚2𝛾2 −𝑚2 tan2(𝑥)
) 

Under the square root, 

2𝑦𝛾𝑚 sec(𝑥) − 𝑦2 −𝑚2𝛾2 −𝑚2 sec2(𝑥) + 𝑚2 

= −𝑦2𝛾2 + 2𝑦𝛾𝑚 sec(𝑥) − 𝑚2 sec2(𝑥) + 𝑦2𝛾2 − 𝑦2 −𝑚2𝛾2 +𝑚2 

= −(𝑦𝛾 − 𝑚sec(𝑥))2 + (𝑦2 −𝑚2)𝛾2𝛽2 

Than 



𝛼𝛽𝛾𝑧 = (𝛾𝑦 −𝑚 sec(𝑥)) (1 −
𝛽𝛾𝛼𝑎

√(𝑦2 −𝑚2)𝛾2𝛽2 − (𝑦𝛾 −𝑚 sec(𝑥))2
) 

Replace 

𝑦𝛾 −𝑚sec(𝑥) → 𝐾 
(𝑦2 −𝑚2)𝛾2𝛽2 → 𝐻2 > 0 

𝛼𝛽𝛾𝑧 → 𝑍 

𝛽𝛾𝛼𝑎 → 𝐺 > 0 

𝑍 = 𝐾 (1 −
𝐺

√𝐻2 − 𝐾2
) 

Next, replace  

𝐾 → 𝐻 sin𝜙 , −
𝜋

2
< 𝜙 <

𝜋

2
 

𝑍 = 𝐻 sin𝜙 (1 −
𝐺

𝐻 cos𝜙
) 

or 

𝑍 = 𝐻 sin𝜙 − 𝐺 tan𝜙 

The momentum square is  

𝑘2 = (𝛾𝑔 − 𝐻 sin𝜙)2 −𝑚2 

When 𝑎 → 0, 𝐺 → 0 

𝑍 = 𝐻 sin𝜙 = 𝐾 = 𝛾𝑦 −𝑚 sec(𝑥) 

→  𝛼𝛽𝛾𝑧 = 𝛾𝑦 − √𝑚2 + 𝑘2  

→ 𝑦 =
1

𝛾
√𝑚2 + 𝑘2 + 𝛼𝛽𝑧 

Or  

𝑘2 = 𝛾2(𝑦 − 𝛼𝛽𝑧)2 −𝑚2 

Return to the infinite detector solution. 

Since 𝐻, 𝐺 > 0, and 𝐺 < 𝐻, as the term  
𝐺

√𝐻2−𝐾2
=

𝑎

2𝜋𝜌
< 1 

The function 

𝑓(𝜙) = 𝐻 sin𝜙 − 𝐺 tan 𝜙 

Looks like this 



 

Where the orange line is the 𝑓(𝜙) and the blue line is 𝑓(𝜙) = 𝑍.  We can see, there are multi-solution 

for 𝜙. Normally, when 𝜃𝑐𝑚 ≫ 0, the derivative is 

𝑓′(𝜙) = 𝐻 cos𝜙 − 𝐺 sec2𝜙 > 0 

From experience (need proof), 𝑓′(𝜙) > 0 is the correct solution for most of the case.  

Only when the  𝜃𝑐𝑚 is too small, so that the e-z line bended so much. In the following plot, the 𝐸𝑥 ∈

(0, 15) MeV, 𝜃𝑐𝑚 ∈ (0°, 60°). There is region where double solution exists, in that case, at the boundary 

that manifold is folded, the proper solution takes 𝑓′(𝜙) < 0, 𝜙 𝑍 > 0.  

 

It seems (Need proof) that the fold happens when  

𝛾2𝛽2𝑘2 − (𝛾𝑞 − 𝑦)2 = 0 

To numerically find the solution, a newton’s method is adequacy.  



𝜙𝑖+1 = 𝜙𝑖 −
𝑓(𝜙𝑖)

𝑓′(𝜙𝑖)
 

 

Appendix  
Lorentz Transform with boost 𝛽  

ℙ = (
𝐸

�⃗� 
) → ℙ′ = (

𝛾𝐸 + 𝛾𝛽 ⋅ �⃗� 

𝛾𝐸𝛽 + �⃗� + (𝛾 − 1)(�̂� ⋅ �⃗� )�̂�
) = (

𝛾𝐸 + 𝛾𝛽𝑘 cos𝜃

(𝛾𝛽𝐸 + 𝛾𝑘 cos 𝜃)�̂� + 𝑘 sin𝜃 �̂�
) 

where �̂� ⊥ �̂�. 

Kinematics of 2-body scattering  
Suppose the reaction is labeled as b(a,1,2), where a→1, b→2 after scattering. The four momenta of the 

incident channel are 

ℙ𝑎 = (
√𝑚𝑎

2 + 𝑘𝑎
2 

𝑘𝑎⃗⃗ ⃗⃗ 
) , ℙ𝑏 = (

𝑚𝑏

0⃗ 
)  

The center of mass 4-vector is 

ℙ𝑐 = ℙ𝑎 +ℙ𝑏 = (
√𝑚𝑎

2 + 𝑘𝑎
2 +𝑚𝑏

𝑘𝑎⃗⃗ ⃗⃗ 
) = (

𝐸𝑐  

𝑘𝑎⃗⃗ ⃗⃗ 
) 

The system mass is 𝑀𝑐 = √𝐸𝑐
2 − 𝑘𝑎

2 = √𝑚𝑎
2 +𝑚𝑏

2 + 2𝑚𝑏√𝑚𝑎
2 + 𝑘𝑎

2 

The Lorentz boost vector is 

𝛽 =
𝑘𝑎⃗⃗ ⃗⃗ 

𝐸𝑐
, 𝛾 =

𝐸𝑐
𝑀𝑐
, 𝛾𝛽 =

𝑘𝑎⃗⃗ ⃗⃗ 

𝑀𝑐
 

The system undergoes a Lorentz boot, so that the total momentum from 0⃗  to 𝑘𝑎⃗⃗ ⃗⃗ = 𝛾𝛽 𝑀𝑐, to see that, in 

the CM frame, 

ℙ𝑐
′ = (

𝛾𝐸𝑐 − 𝛾𝛽 ⋅ 𝑘𝑎⃗⃗ ⃗⃗  

−𝛾𝛽 𝐸𝑐 + 𝛾𝑘𝑎⃗⃗ ⃗⃗ 
) = (

𝑀𝑐  

0⃗ 
) 

where 

𝛾𝐸𝑐 − 𝛾𝛽 ⋅ 𝑘𝑎⃗⃗ ⃗⃗ = 𝛾𝐸𝑐 − 𝛾
𝑘𝑎
2

𝐸𝑐
=
𝛾

𝐸𝑐
(𝑀𝑐

2) = 𝑀𝑐 

In CM frame, 



ℙ𝑎
′ =

(

 
𝛾√𝑚𝑎

2 + 𝑘𝑎
2 − 𝛾𝛽 ⋅ 𝑘𝑎⃗⃗ ⃗⃗  

−𝛾𝛽 √𝑚𝑎
2 + 𝑘𝑎

2 + 𝛾𝑘𝑎⃗⃗ ⃗⃗ )

 , ℙ𝑏
′ = (

𝛾𝑚𝑏

−𝛾𝛽 𝑚𝑏 
) 

Check the energy part 

𝛾√𝑚𝑎
2 + 𝑘𝑎

2 − 𝛾𝛽 ⋅ 𝑘𝑎⃗⃗ ⃗⃗ + 𝛾𝑚𝑏 = 𝛾𝐸𝑐 − 𝛾𝛽 ⋅ 𝑘𝑎⃗⃗ ⃗⃗ = 𝑀𝑐 

The momentum part 

−𝛾𝛽 √𝑚𝑎
2 + 𝑘𝑎

2 + 𝛾𝑘𝑎⃗⃗ ⃗⃗ − 𝛾𝛽 𝑚𝑏 = 𝛾𝛽 𝐸𝑐 + 𝛾𝑘𝑎⃗⃗ ⃗⃗ = 0 

After the scattering, only direction changed.  

𝑝2 =
1

4𝑀𝑐
2
(𝑀𝑐

2 − (𝑚1 +𝑚2)
2)(𝑀𝑐

2 − (𝑚1 −𝑚2)
2) 

The 4-momenta 

ℙ1
′ = (

√𝑚1
2 + 𝑝2 

𝑝 

) , ℙ2
′ = (

√𝑚2
2 + 𝑝2 

−𝑝 

) 

Return to the Lab frame 

ℙ1
′ =

(

 
𝛾√𝑚1

2 + 𝑝2 + 𝛾𝛽 ⋅ 𝑝  

𝛾√𝑚1
2 + 𝑝2𝛽 + 𝑝 + (𝛾 − 1)(�̂� ⋅ 𝑝 )�̂�

)

 , ℙ2
′ =

(

 
𝛾√𝑚2

2 + 𝑝2 − 𝛾𝛽 ⋅ 𝑝  

𝛾√𝑚2
2 + 𝑝2𝛽 − 𝑝 − (𝛾 − 1)(�̂� ⋅ 𝑝 )�̂�

)

  

 

The momentum part can be rewritten using �̂� ⋅ 𝑝 = 𝑝 cos 𝜃 

ℙ1
′ =

(

 
 

𝛾√𝑚1
2 + 𝑝2 + 𝛾𝛽𝑝 cos 𝜃 

(𝛾𝛽√𝑚1
2 + 𝑝2 + 𝛾𝑝 cos𝜃) �̂� + 𝑝 sin 𝜃  �̂�

)

 
 
,ℙ2
′ =

(

 
 

𝛾√𝑚2
2 + 𝑝2 − 𝛾𝛽𝑝 cos 𝜃 

(𝛾𝛽√𝑚2
2 + 𝑝2 − 𝛾𝑝 cos𝜃) �̂� − 𝑝 sin 𝜃  �̂�

)

 
 

 

where �̂� ⊥ �̂�.  

The total energy must be conserved, 

𝐸1 + 𝐸2 = 𝛾√𝑚1
2 + 𝑝2 + 𝛾√𝑚2

2 + 𝑝2 = √𝑚𝑎
2 + 𝑘𝑎

2 +𝑚𝑏 

The opening angle  



𝑘1𝑘2 cos 𝜃12 = (𝛾𝛽√𝑚1
2 + 𝑝2 + 𝛾𝑝 cos𝜃)(𝛾𝛽√𝑚2

2 + 𝑝2 − 𝛾𝑝 cos𝜃) − 𝑝2 sin2 𝜃 

 

Assume the masses of 1,2 are equal the masses of a, b 
After the scattering, only direction changed. Also, we can check the momentum formula 

𝑝2 =
1

4𝑀𝑐
2
(𝑀𝑐

2 − (𝑚𝑎 +𝑚𝑏)
2)(𝑀𝑐

2 − (𝑚𝑎 −𝑚𝑏)
2)

?
→ 𝛾2𝛽2𝑚𝑏

2 

Each term,  

𝑀𝑐
2 − (𝑚𝑎 +𝑚𝑏)

2 = 𝑚𝑎
2 +𝑚𝑏

2 + 2𝑚𝑏√𝑚𝑎
2 + 𝑘𝑎

2 − (𝑚𝑎 +𝑚𝑏)
2 = 2𝑚𝑏√𝑚𝑎

2 + 𝑘𝑎
2 − 2𝑚𝑎𝑚𝑏 

𝑀𝑐
2 − (𝑚𝑎 −𝑚𝑏)

2 = 𝑚𝑎
2 +𝑚𝑏

2 + 2𝑚𝑏√𝑚𝑎
2 + 𝑘𝑎

2 − (𝑚𝑎 −𝑚𝑏)
2 = 2𝑚𝑏√𝑚𝑎

2 + 𝑘𝑎
2 + 2𝑚𝑎𝑚𝑏 

𝑝2 =
1

4𝑀𝑐
2 (4𝑚𝑏

2(𝑚𝑎
2 + 𝑘𝑎

2) − 4𝑚𝑎
2𝑚𝑏

2) = 𝑚𝑏
2
𝑘𝑎
2

𝑀𝑐
2 = 𝛾

2𝛽2𝑚𝑏
2  

 

 

Assume the mass of a and b are the same 
Suppose the masses 𝑚𝑎 = 𝑚𝑏 = 𝑚 = 𝑚1 = 𝑚2 

ℙ𝑎
′ =

(

 
𝛾√𝑚2 + 𝑘𝑎

2 − 𝛾𝛽 ⋅ 𝑘𝑎⃗⃗ ⃗⃗ 

 −𝛾𝛽 √𝑚2 + 𝑘𝑎
2 + 𝛾𝑘𝑎⃗⃗ ⃗⃗ )

 , ℙ𝑏
′ = (

𝛾𝑚

−𝛾𝛽 𝑚 
) 

𝑝2 =
𝑀𝑐
2

4
−𝑚2 = 𝛾2𝛽2𝑚2⟹𝑀𝑐

2 = 4(𝛾2𝛽2 + 1)𝑚2 = 4𝛾2𝑚2 

𝑀𝑐 = 2𝛾𝑚 

As we expected, as the particle a and b should share equal energy in CM frame, i.e. 

𝛾√𝑚2 + 𝑘𝑎
2 − 𝛾𝛽 ⋅ 𝑘𝑎⃗⃗ ⃗⃗ = 𝛾𝑚 

Which can be obtained using 

𝑚2 = (𝛾√𝑚2 + 𝑘𝑎
2 − 𝛾𝛽 ⋅ 𝑘𝑎⃗⃗ ⃗⃗ )

2

− 𝛾2𝛽2𝑚2 

The scattered 4-momenta in CM frame are 

ℙ1
′ = (

𝛾𝑚 

𝑝 ) , ℙ2
′ = (

𝛾𝑚 

−𝑝 ) 



In Lab frame, 

ℙ1 = (
𝛾2𝑚 + 𝛾𝛽 ⋅ 𝑝 

𝛾2𝛽 𝑚 + 𝑝 + (𝛾 − 1)(�̂� ⋅ 𝑝 )�̂�
) , ℙ2 = (

𝛾2𝑚− 𝛾𝛽 ⋅ 𝑝 

𝛾2𝛽 𝑚 − 𝑝 − (𝛾 − 1)(�̂� ⋅ 𝑝 )�̂�
) 

The momentum part can be rewritten using �̂� ⋅ 𝑝 = 𝑝 cos 𝜃 = 𝛾𝛽𝑚 cos 𝜃 

𝛾2𝛽 𝑚 + 𝑝 + (𝛾 − 1)(�̂� ⋅ 𝑝 )�̂� = (𝛾2𝛽𝑚 + 𝛾𝑝 cos 𝜃)�̂� + 𝑝 sin𝜃  �̂� 

Where �̂� ⊥ �̂�.  

ℙ1 = (
𝛾2𝑚(1 + 𝛽2 cos𝜃)

𝛾2𝛽𝑚(1 + cos 𝜃)�̂� + 𝑝 sin 𝜃  �̂�
) , ℙ2 = (

𝛾2𝑚(1 − 𝛽2 cos𝜃)

𝛾2𝛽𝑚(1 − cos 𝜃)�̂� − 𝑝 sin 𝜃  �̂�
) 

When scattering angle 𝜃 = 0 

ℙ1 = (
𝛾2𝑚(1 + 𝛽2)

2𝛾2𝑚 𝛽 
) , ℙ2 = (

𝑚

0⃗ 
) 

Check: 

𝛾2𝑚(1 + 𝛽2) = 𝛾2𝑚+ (𝛾2 − 1)𝑚 =  2𝛾2𝑚 −𝑚 = 𝛾𝑀𝑐 −𝑚 = 𝐸𝑐 −𝑚 = √𝑚
2 + 𝑘𝑎

2 

2𝛾2𝑚 𝛽 = 2𝛾𝑚
𝑘𝑎⃗⃗ ⃗⃗ 

𝑀𝑐
= 𝑘𝑎⃗⃗ ⃗⃗  

The total energy or energy conservation, 

𝐸1 + 𝐸2 = 𝛾
2𝑚(1 + 𝛽2 cos 𝜃) + 𝛾2𝑚(1 − 𝛽2 cos 𝜃) = 2𝛾2𝑚 = 𝐸𝑐  

The opening angle 

𝑘1𝑘2 cos 𝜃12 = 𝛾
4𝛽4𝑚2 sin2 𝜃 

 

 

Assume the mass of 1 and 2 becomes equal after scattering 
Suppose the mass becomes 𝑚, the momentum is 

𝑝2 =
𝑀𝑐
2

4
−𝑚2 =

1

4
(𝑚𝑎

2 +𝑚𝑏
2 + 2𝑚𝑏√𝑚𝑎

2 + 𝑘𝑎
2 − 4𝑚2) 

ℙ1
′ = (

𝑀𝑐
2
 

𝑝 
) , ℙ2

′ = (

𝑀𝑐
2
 

−𝑝 
) 



ℙ1 = (

𝛾𝑀𝑐
2
+ 𝛾𝛽𝑝 cos 𝜃

(
𝛾𝛽𝑀𝑐
2

+ 𝛾𝑝 cos 𝜃) �̂� + 𝑝 sin𝜃 �̂�

) , ℙ2 = (

𝛾𝑀𝑐
2
− 𝛾𝛽𝑝 cos 𝜃

(
𝛾𝛽𝑀𝑐
2

− 𝛾𝑝 cos 𝜃) �̂� − 𝑝 sin 𝜃 �̂�

) 

 

Opening angle 

𝑘1𝑘2 cos 𝜃12 =
𝛾2𝛽2𝑀𝑐

2

4
− 𝛾2𝛽2𝑝2 cos2 𝜃 − 𝑝2 

=
𝛾2𝛽2𝑀𝑐

2

4
− 𝛾2𝛽2𝑝2 cos2 𝜃 − 𝑝2 =

𝛾2𝛽2𝑀𝑐
2

4
−
𝑀𝑐
2

4
+𝑚2 − 𝛾2𝛽2𝑝2 cos2 𝜃 

 

Kinematics of transfer reaction 
 

Kinematics of knockout reaction 
 


