Kinematics in HELIOS detector and particle
detection
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Transfer Reaction

The kinematics of transfer reaction, denote as A(a,b)B, where A is incoming particle with larger mass, a
is target nucleus, b and B are scattered particles, in which b is the lighter one.

The four-momentum vector of particle b and B is

E:t
E yq — yBk cos 0., E
P, = (pz ) = (yﬂq — vk cos Hcm> = (p cos 9) A E-L‘m

Pxy k sin 0., psinf > 4

Py =| Pz YBQ + yk cos 0., p’ cos 6 b
Dxy —ksin 8.y, p'sin@

E' <yQ + yBk cos Gcm) E’'

Where

1
q= m§+k2=—(EtZ+m12,—m§)
2F,

1
Q= /m§+k2=ﬁ(Et2—m§+m§)
¢

1
k? = W(Etz — (mp + mp)?)(EZ — (m, —mp)?)
t

M2 = E? =2m,(my + T) + m2 + m3 = (mg + my)? + 2m,T

Jmy + T2 —m? 1

- mg+my+T y=/1_‘82

In here 8., is the center of mass scattering angle. k is the momentum of particle b or B in CM frame. E;
is the total energy in CM frame, or the mass of the system M.. q is the total energy of particle b in CM
frame. T is the total kinetic energy of particle A.
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tanecm:pT
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Using this four-momentum vector, we are going to give out the formula that use in HELIOS. The most
representation plot is the e — z plot, where the kinetic energy versus position along the HELIOS axis. A
typical plot like this:



The black curve is the lower or upper bound of the energy. The red line the locus for fixed excitation
energy. The blue line is the line for 8.,, = 0, and the green curve is constant 8, or T — 0., -

The basic formula is the rotation radius

P

P=zB

where P is momentum in MeV/c that perpendicular to the magnetic field B (in T), Z is the charge state,
¢ = 299.792458. the unit of p is meter. Under the kinematics of transfer reaction

_ Pxy _ ksinByy,
P=ZB~ " czB

The time for a cycle is

2np 2w ksin@,,

v, c¢ZB v,

The time for a cycle is almost fixed. Thus the length for a cycle is

ZO=U||t=2T[pﬂ=2—T[ﬂkSinecm, ﬂ=i
v, cZBv, v, tané
p 2m
%= 27TtanH ~zBP:
cZB
az=p;=yBq—vkcosbey, —a=——

With the energy equation, we have 2 coupled equations:

az=yfq—vkcosO.,
e+my =yq —yBkcosO.py

By eliminate difference variable, we can get all difference curves or line.



The constant E, line
First, by eliminating cos 8,.,,, we get the red line, which only depends on excitation energy
M?2 +mi —mé cZB

e y q—my+afz 2V E, my > bz
The intercept of the red line is
_ MZ+mj —mj
ey = 2V E, my

The only non-constant is mg, which can be excited. Let examine the term, for E,, < mg

mg . (mp +Ex)*  mg ( %) mg | mg

~ = +—E
2YE; 2YE, 2YE; mp 2vE,  YE. ”
At small incident energy, M, = m, + mg + T¢yy ® mp, ¥y = 1,

MZ + mé —m3

ey ~ —my — E
second, we can also eliminate e, so that,
cosf., = ﬁ—q — iZ
cm k yk

This is the center-of-mass-angle to z-position relationship. The dependency of the excitation energy is
inside the term q.

The constant 8, line
Next, we eliminate mg, notice that k = k(mg), we need to eliminate that as well, we have a
complicated curve

—sin?(8.) aBy?z + cos O, Jazzz +mi(1 - sin?(6.,,) ¥2)

=—m, +
¢ b 1- Sinz(gcm) yz

This is a general contour for a given 8.,,,. When 6,,,, = 0, it reduces to
e=—my,+ /azzz +m?
This is the black curve. When 6., = g,
e=—-my+—-z

This is the blue line.



The Bore radius line
Since the detector may have maximum radius R, and 2p < R. Thus,

ksinf., R ) cZB
—7F E:ksmeo =RT=Ran

IA

p =
Put in the 2 coupled equations:

az =ypq —yk*— (Ram)?
e +my, =yq —yByk*— (Ram)?

Expand in recoil mass mp,

1
k? = W(Etz — (mp + mp)?)(EZ — (m, — mp)?)
t

1 1
az=ypo— (B} +mf—m}) —y jﬁ (B = (my + mp)?) (EZ = (m, —mp)?) — (Ram)?
t t

1 1
e+my=y-—(EZ +mi —m§) —yB |-—5 (EZ — (m}, + mp)?)(EZ — (mp — mp)?) — (Raw)?

2E AE

t t

Eliminate mp

2mpe + e? = a?(n?R? + z?)

e= Jaz(anZ +2z2) + mZ —m,
Compare with the constant 8.,,, = 0 line

e = /a222+m12,—ml2,

The

Maximum excitation energy
We can see that, when the excitation energy of particle B is higher, the red line shifts lower, there is an
upper limit for the red line to be shifted, which is when the red line touches the black curve.

Y
(emax: Zmax) =\mpYy — mbr?mb

Solve for the maximum mpg

mg(max) = M, — my, = +/(mg + my)? + 2m,T —m,

Which make perfect sense in CM frame. At non-relativistic limit,



m,T
mp(max) = (m, + my)2+2m,T—m, > m, +my +————my, = Q + mg + —
B( ) \/( a A) a b a A ma+mA b Q B ma+mA

m,T
E,(max) =Q+——=Q+T,,
m, + my

Where T,,, is the CM frame kinematics energy.

Minimum Incident energy
The minimum incident energy requires that

M, >my +mg = (mg + my)? + 2myTppin = (my, + mp)?

(mp + mp)? — (g + my)? my
Tmin= a E—Q(1+m—)¢Q
a

2m,

Tilted Reaction
When the incident particle with some incident angle 8,4, the four-momentum of particle b will be tilted

by angle 8,
E 1 0 0 yq — vk cos O,
P, = ( Pz ) = (0 cos@, —sin 9A> (yﬁq — vk cos Hcm>
Dxy 0 sinf; cosfO, ksin@,,

Since the z-position is

az=p, = (yBq —vkcosB.,)cosby + ksin(b,,) sinf,
With the energy

e+m=q—yBkcosO.y

Eliminate 8.,,, we got

1
afz = (e +m—}g/) cos b, +}—/\/(yﬁk)2 —(q—e—m)?sinb,



e [MeV]

]
T

|:||||I||||I||||I|II|I||||I||||

-0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00

z [m]

In the above plot, the orange line is the normal constant E, line, the green curve is 8, = 50 mrad, and
the red curve is 84 = —50 mrad. 50 mard ~ 2.9 deg. And the blue curve is with finite detector
correction, such that a = 0.01 meter. The reaction is 208Pb(d,p) at 10 MeV/u, magnetic field is 2.85T.

In this calculation, we can see the finite emittance of the beam could contribute a lot to the energy
resolution.

Alpha Source

When alpha source is put at the axis, the 4-momentum is

IP=(E,pZ,pxy), E=m,+T, p, =pcoso, p=+2m,T + T?
Under a magnetic field, the bending radius is

P

P="7B

where P is momentum in MeV/c that perpendicular to the magnetic field B (in T), Z is the charge state,
¢ = 299.792458. The unit of p is meter

__psind

P="zB "

The time for a cycle is

2np  2m psinf

t = =
v, ¢ZB v,

Thus the length for a cycle is



v 2w v T
ZO=v"t:27tp—"=——"psin9=—pcost9, — =
v, cZBv, cZB v, tané
_ 21 0
ZO_CZBpCOS

The locus is
x sin¢ — sin (tan(G) z + qb)
()= f

y z
cos ¢ — cos (tan(e) ’ + (,b)

The radius is

r=4x%+y?= \/Ep\/l — cos (tan(@)%)

Finite axial detector
A finite axial detector is a polygonal prism that surrounded and centered the HELIOS axis and larger than

the beam size. The blue circle is the XY projection of the particle trajectory. The orange line is one of the

detector plan.

For am axial detector, the normal of a plane is

= (cos ¢p,sin g, ,0)

The equation for the detector plane is

xcos¢, +ysing, =a



Where a is the shortest distance from the plane to z-axis.

The equation of the locus of the positive charged particle, when the B-field is direct to the z-axis, is
z

sin¢ — sin (tan(G) -+ qb)
p
z

cos ¢ — cos (tan(G) ’ + (,b)

Where (6, ¢) is the scattering angle of particle b.

The hit points are

L __p
R~ tan(9)

a
(0= ¢+t 2 sin (S sin(6 = ) m = 01.2..
For real solution,
a
-1 <;+sin(¢—¢p) <1

Notice that, the length for a cycle is

_2mp
%= tan(6)
Znit = ZZ_7OT(¢p — ¢ +nm+ (—1)"sin? (% + sin(¢ — (f)p)))

Since we want the know which hit-point is hit from outside, i.e. the direction of the particle is toward
the axis, not outward from the axis.

The direction vector for the particle is

z
d xy cos (tan(@); + (,‘b)
dz (Y) = ptan(f) sin (tan(@)% + (,‘b)

The dot product with the plane normal

cos @' = ptan(0) cos (tan(@)%+ ¢ — qbp) <0

z
= cos (tan(@) E + ¢ — d)p) <0
In fact, using geometrical argument, for n = odd number, the hit point is always inward. Substitute z;;
a
Cos (nn + (—1D)"sin™? <E + sin(¢ — ¢p)))
a
= (—1)"cos (sin‘1 (; + sin(¢ — ¢p)))



2
- (—1)71]1 - (%+ sin(¢ — d)p)) <0

This prove the geometrical argument that n = odd.

A special case for¢p = 0,¢p, =m,n =1

Znit = tarll.ﬁ (271 —sin™?! (%)) = 2 (1 — %Sin_1 (g))

The rotated angle is smaller then 2rt. When p > a

1la
Zpit ~ Zo (1 - §;>

With the transfer reaction
The red line becomes

aa

==

When e become large, the sin~!() becomes small, and the formula becomes to normal one.

(.4 3 Byaa
= (y V> <1 VY2 B%k? — (vq - y)2>

(i r0-2)1-
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Off-axis Effect
When the helix of particle b is off-axis.

z
X sin (tan(@) ; + ¢) —sing¢ cos ¢
(y) 7 cos ¢ — cos (tan(@)lz—) + ¢> * o (sin ¢>3)

The solution for z;; becomes

a—pPo C05(¢0 - ¢p)
)

g =P
M tan(9)

<¢p — ¢+ + (—1)7 sin! < + sin(¢ - ¢,,)>>,n 012

Forn=1,¢,=m,¢ =0

1 . (a+pocos(do)
Zpit = Zo 1—§sm f ,

a + po cos(¢y)
p

<1

We can see, the effect is same as change of the effective a.sr = a — pg cos(¢0 - ¢p). Also the beam
size must be smaller than the detector distance p > a > p, cos(¢0 - ¢p).

Radial Detector (no conclusion yet)

A radial detector is a plane detector located at fixed z-pos (zz) and perpendicular to HELIOS axis. The hit
position with an off-axis helix is



)
cos ¢ — cos (tan(@) ?R + ¢> sin ¢

For py = 0, the radial position is

r = xZ +y2=p\/2—2COS(tan(9)Z?R)

k sin@ tan(0) z cZB
Pxy _ cm tan@zpﬂ, (0) R _ 2

“cZB_  cZB ' Dy p Dy

p

Since the z-pos is fixed, the TOF from target to the detector is

zp Zp E

UZ c pZ

Eliminate the k cos 6., in p,, we have

Knockout reaction

The reaction is notated as A(a, 12)B, where A =B + b, in which b is the bounded nucleus, and 1 and 2 are
free scattering particles. When particle b knocked out, it becomes particle 2. The energy and
momentum conservation is

Py + P, =P, + P, + Py
In which the mass of particle B is
mg+my, =my+S
The reaction Q-value is
Q=my+myg—my —my, —mg=-S

The recoil of the particle B assumed the form

]P)B = (mB’ —kb) = <\/(mA - mz + 5)2 + |kb| 2, _kb>
Where S is separation energy, k is the recoiled momentum, which is same but opposite direction with
the bounded nucleus b, as particle A is stationary.
Assume a is the incident particle and A is the target, We can from a quai-particle b by

szlP)A_]PB



Py, = (mbvzb) = (mA _J(mA —mg +8)% + |E

2 —
ykb>

Thus, the rest is similar to that of transfer reaction, except the target is also moving.

Because the “target” b and incident particle a are both moving, this forms the plane of incident channel.

And the exit channel, the particle 1 and 2 can be not on the same plane. The following illustration is
normal kinematics.

Before Scattering

L T a
Ala,12)B € o
A= B+b
a=>1
‘bh=>2 )
L. A
After Scattering MNucleon-Nucleon C.M. Frame

EHN
- Ty, 61, ¢, >/
ttered v
T @ o< '—o
/
o

Knockout

proton /
O o9 kg = —ks

Once the quasi-particle is constructed, the reaction is reduced to
P, + P, =P, + P,
Thus, the next step of calculation is identical to transfer reaction. The reaction constants are

ko +kp 1

’ Y = F/——
Eq +Ey NI

|2

g =

Et=J(Ea+Eb)2+IE+E

1

k? =—
4E?

(EZ — (my + mp)*)(EZ — (my — my)?)



in above, ﬁ is the Lorentz boost to NN-CM frame. E; is the total energy in NN-CM frame, or the intrinsic
total energy of NN-system. k is the magnitude of momentum of the scattered particle 1 and 2 in NN-CM
frame.

Since the Lorentz boost of from the Lab frame to the NN-CM (nucleon-nucleon center of mass) frame is
not on the z-axis, the formula for the particle 1 and 2 is complicated. In the NN-CM frame, the four-

vector for particle 1 is
E /mf + k?
]P)1 =| Pz =

B k cos@

p
i k sin@

Where 6 is not the CM frame scattering angle, because the particle a could has some finite polar angle.

Inverse Kinematics

In inverse kinematics, the momentum k_6£ = 0, that simplify the calculation that, the reaction is a tilted
transfer reaction, i.e. the reaction axis is not on the z-axis.

Reconstruct scattered four-momentum
In knockout experiment, we need to reconstruct the four momenta. Under HELIOS, to problem is
converting zp;; to 0;, the lab angle.

Inverse Problem

We show that the solution from CM frame to Lab frame, or from theory to experiment. Basically, the
HELIOS is a problem of finding the mapping

In term of E, and cos 8.,
We can express (z, e) in term of (Ey, 6.,,) as

(e) Y (ME +mg — (mp + Ex)? — B cos O/ (M2 — (n +mp + Ex))) (M2 — (m— M — Ex>2)>
Z

T 2E \ (M2 +m — (g + Ex)?) — c0S By /(M2 — (m + M + EQ)2)(MZ — (m — M — Ep)?)

The inverse

E —mg + \/MCZ +mi — 2yM_(E — afz)
(cos HCm> - Y(EB —az)
(@ - —m




Get k and 8., from e and z
From experiment, we get the energy (y = e + m) and position (z), then we can reconstruct the reaction
constant k and 6.,,.

k* =y*(y — Baz)* — m?

0 (az—PBy) yvm?+k?—y
CoOSU m = ]/k = )/ﬂk

From k2, the total mass of the particle B is

mi = m} + M2 — 2M, |k? + m?

Where M, is the total mass of the system.

Finite detector
The coupled solution is

y=e+m=yym?+k?—yBkcosb.,

ksinf., ksinf,,
p = =

cZB 2na
afyz = (yy —ym?2 + kz) (1 - ig)
2w p
Solve cos 8 from 1t equation, and sub into 2" equation,
Byaa

afyz = (yy —\m?+ kZ) 1-—
(2 TR — 52—yt -1

Use

/[
k - mtan(x), O<x<§

Braa )
\/Zyym sec(x) —y? —m?y? — m?tan?(x)

apyz = (yy — msec(x)) (1 -

Under the square root,

2yymsec(x) — y? — m?y? — m?sec?(x) + m?
= —y2y? 4+ 2yymsec(x) — m?sec?(x) + y?y%2 —y? —m?y? +m
= —(yy —msec(x))? + (y* — m?)y?p?

2

Than



Byaa

apyz = (yy — msec(x)) <1 B J (2 —m2)y2p2 — (yy — msec(x))?

Replace

yy —msec(x) » K
o? —m?)y?p* > H> >0

afyz - 7
Lyaa - G >0
G
Z=K(1——>
H?2 — K2
Next, replace
K - Hsing, -—=<¢Pp<=
Z = Hsi (1 ¢ )
=Hsing Hcos¢

or

The momentum square is
k? = (yg — Hsin¢)? — m?
Whena - 0,G - 0

Z =Hsing = K =yy —msec(x)
> afyz =yy —m?+k?

1
—>y=}—/\/m2+k2+aﬁz

Or
k? =y*(y — aBz)* —m?
Return to the infinite detector solution.

. G a
Since H,G > 0, and G < H, as the term \/ﬁ_ﬁ<l

The function
f(¢p) =Hsing — G tan ¢
Looks like this

)
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Where the orange line is the f(¢) and the blue line is f(¢p) = Z. We can see, there are multi-solution
for ¢. Normally, when 6., > 0, the derivative is

f'(¢) =Hcosp —Gsec’¢p >0
From experience (need proof), f'(¢) > 0 is the correct solution for most of the case.

Only when the 8., is too small, so that the e-z line bended so much. In the following plot, the E,. €
(0,15) MeV, 0., € (0°,60°). There is region where double solution exists, in that case, at the boundary
that manifold is folded, the proper solution takes f'(¢) < 0,¢ Z > 0.
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It seems (Need proof) that the fold happens when
Y2B%k? = (yq —y)* =0

To numerically find the solution, a newton’s method is adequacy.
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Appendix

Lorentz Transform with boost E

IP:(E)—MP)’:( YE+ypB -k >:( yE+yﬁkcA059 )
YEB+k+ (y— D(B- E)ﬁ (yBE + ykcos0)B + ksinf i

where § 1 7.

Kinematics of 2-body scattering
Suppose the reaction is labeled as b(a,1,2), where a=>1, b=>2 after scattering. The four momenta of the

incident channel are
2 2
’m +k m
Pg = ¢ “ Py = ( *b)

—

kq

The center of mass 4-vector is

2 2 E
P, =P, +P, =™t ket :<i>

—

kq

The system massis M, = \/E? — k2 = \/mﬁ + mlz, + 2myym2 + k2

The Lorentz boost vector is

.k, E. . ke
ﬁ:—, Y =7 yB:_
c MC MC

The system undergoes a Lorentz boot, so that the total momentum from 0to E{ = yEMC, to see that, in

the CM frame,
P1=<yEc_yﬁ'ka>=( c)
(o4 - —_— bd
_V.BEC + yka 0

2

a y 2
2= (WM)=M
5 =5 MO =M,

where

YE. —vB - ka =VE.—V

In CM frame,



/V m?x*"‘é‘Vﬁ'E\\ ymy,
[ o)

\—ﬂ? mé+k§+VFa/

yBm,
Check the energy part
V‘/m(21+k§_yﬁ'ka+ymb =yE.—vypB - kq =M,

The momentum part
—vB |mé + k& +vkq —yBmy, = yBE. +ykg =0

After the scattering, only direction changed.

1
p? = —= (Mg — (my + my)?)(MZ — (my — my)?)
4M2

The 4-momenta

2 2 2 2
P, = my+p ' P, = m; +p )

a1
|
=

Return to the Lab frame

V/m%+p2+yﬁ-ﬁ V/m%+p2—yﬁ-ﬁ

P = ) P, =
y mi+p2B+5+ @ -1 p)B y[m3+p26-5- -1 BB

The momentum part can be rewritten using - p = p cos 6

y ’m%+p2+yﬁpc059 y ’m§+p2—yﬁpc059

P, = P, =
(yﬁ m%+p2+ypcos¢9>[?+psin9 l <y,8 m3 + p? —ypcos@)ﬁ—psin@ l

where 8 L A,

The total energy must be conserved,

E1+E2:y\/mf+p2+y\/m§+p2=\/m§+k§+mb

The opening angle



kik, cos 0y, = <yﬁ m? + p2 + yp cos 9) <yﬁ m3 + p? — yp cos 9) —p?sin? 6

Assume the masses of 1,2 are equal the masses of a, b
After the scattering, only direction changed. Also, we can check the momentum formula

2

?
= a2 (MZ — (mg + mp)?)(ME — (mg — mp)?) - y2B*mj
c

p

Each term,

M2 — (mg + mp)? = m2 + m + 2my, [m2 + k2 — (my + mp)? = 2m, ’m,zl + k2 — 2m,m,

MZ — (mg —mp)? = mZ + mZ + 2my, |m2 + k2 — (mg — my,)? = 2m, /m?l + kZ 4+ 2m,m,

1 kZ
p? = oz (4mb(mi + k) — 4mimf) = mf -5 =
c

202,,,2

Assume the mass of a and b are the same
Suppose the massesm, = m, =m =m,; =m,

y’m2+k§—yﬁ-k—a) ym
P (ym)

= ) ]P)’ = -
b7 \—ypm

-

—yB |m? + k% + vk,

p? =——m? =y?p*m? = M? = 4(y?B? + 1)m? = 4y’m?
M. =2ym

As we expected, as the particle a and b should share equal energy in CM frame, i.e.

y|m? + k& —vB ks =ym
Which can be obtained using
2
m? = (V /mz +kZ—ypB- ka) —y*p*m?

The scattered 4-momenta in CM frame are

P=(5) m=(5)



In Lab frame,
P _( y’m+yB-p ) P _( y’m—vyB-p >
1— =4 - A \NA 1’ 2~ 4 - A >\ A
v pm+p+ G —D(B-p)B v pm—p - —1D(B p)B
The momentum part can be rewritten using f - g = p cos8 = yBm cos
y2Bm+p+ @ —1D(B-$)B = (¥*pm+ypcos)f +psind A
Where £ L #i.

P — y2m(1 + ?cos ) _ y2m(1 — f?cos )
P \y2Bm(1 + cos0)B + psind A)’ 27 \y2Bpm(1 — cos ) —psin® A

When scattering angle 8 = 0

y*m(1+ B?) m
1= < 2y*mf ) P =(5)

Check:

YV’m(A+8)=y’m+@?-1)m=2y>m-m=yM,—-m=E.—m= |m?2+k2

2y2mf = 2)/mE =k,
M, a

The total energy or energy conservation,
E; +E, =y?>m(1+ p%cos8) +y?m(1 — B?cosh) = 2y*m = E,
The opening angle

kik, cos 61, = y*B*m? sin? @

Assume the mass of 1 and 2 becomes equal after scattering
Suppose the mass becomes m, the momentum is

Mz 1 5
p2=T—m2=Z m2 + mg + 2my, |mZ + k2 — 4m?

M,
2

P; , P; =

N

-p



YM, YM,

+ yfp cos 6 — yBpcosB
P, = 2 P, = 2
! YBM, U YBM, 5 o
T+ypcost9 B +psinfi T—ypcos [ —psinfi
Opening angle
2522
kik, cos 6, _Y B4 C —y2B2p2 cos? f — p?
2 2M2 2 ZMZ MZ
_Y 54 C_yzﬁzp2CO529_p2=V '84 C—Tc+m2—y2,82p2c0526

Kinematics of transfer reaction

Kinematics of knockout reaction



