HPC/Applications: Difference between revisions

From CNM Wiki
< HPC
Jump to navigation Jump to search
 
(188 intermediate revisions by 2 users not shown)
Line 1: Line 1:
__NOTOC__
{{Catalog Header Modules}}
== Introduction ==
<!--
[[HPC/Software/Environment | ''Carbon'' software provisioning]] is based on
= Index =
the [http://modules.sourceforge.net/ Environment Modules] package.
<div style='column-width:14em; -moz-column-width:14em; -webkit-column-width:14em; column-gap:1em; -moz-column-gap:1em; -webkit-column-gap:1em;'>
;General modeling, analysis, and visualization:
;Molecular Visualization:
;Quantum Chemistry/DFT:
;Classical MD:
;Nanophotonics and fabrication:
;Toolkits:
;Libraries:
;Development:
;Deprecated:
:[[#intel/11|intel/11]]<br>
;System:
;Modules:
;Uncategorized:
</div>


== Overview ==
{{Catalog Index Footer Modules}}
-->
= Local documentation =
Documentation about local installation and usage is available for some applications and development packages.


Modules as of 2011-05-18, 15:40.
You can also locate those pages by using the "Search CNM Wiki" box near the top of the current page.


{| class="wikitable" cellspacing="0" cellpadding="5" style="text-align:left;  margin: 1em auto 1em auto;"
== Applications ==
|- style="background:#ccc;"
<div style="column-count:2">
! width="15%" | Name
* [[HPC/Applications/vasp                  | VASP]]
! Summary
* [[HPC/Applications/lammps                | LAMMPS]]
! width="40%" | Versions
* [[HPC/Applications/g09                   | Gaussian]]
|-
* [[HPC/Applications/q-chem                 | Q-Chem]]
| colspan="3" align="left" style="background:#ded; padding: 10px;" | <font size="+1">''' ''[[#Carbon applications|Carbon applications]]'' '''</font>
* [[HPC/Applications/quantum-espresso       | Quantum-ESPRESSO]]
|-
* [[HPC/Applications/cp2k                  | CP2K]]
| '''[[../Catalog/asap|asap]]'''
* [[HPC/Applications/nwchem                | NW-Chem]]
| <font color="black">[[#asap|ASE calculator for Dacapo (python interface) ]]</font>
* [[HPC/Applications/namd                  | NAMD]]
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">'''3.2.0-1'''</div>
* [[HPC/Applications/atk                    | ATK]]
|- style="background:#efe;"
* [[HPC/Applications/jmol                  | JMol]]
| '''[[../Catalog/asap3|asap3]]'''
* [[HPC/Applications/meep                  | MEEP]]
| <font color="black">[[#asap3|ASE calculator for Dacapo (python interface) ]]</font>
* [[HPC/Applications/comsol                | COMSOL]]
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">'''3.2.0-1'''</div>
* [[HPC/Applications/lumerical              | Lumerical]]
|-
</div>
| '''[[../Catalog/ase2|ase2]]'''
| <font color="black">[[#ase2|ASE is an Atomistic Simulation Environment in Python. ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">'''2.3.13-1'''<br>2.3.13-2<br>2.3.13-3</div>
|- style="background:#efe;"
| '''[[../Catalog/ase3|ase3]]'''
| <font color="black">[[#ase3|ASE is an Atomistic Simulation Environment in Python. ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">3.0.0-3<br>3.2.0-1<br>'''3.2.0-3'''<br>3.4.1-1</div>
|-
| '''[[../Catalog/atk|atk]]'''
| <font color="black">[[#atk|Atomistix ToolKit (ATK) from QuantumWise ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">10.8.0-1<br>10.8.1-1<br>10.8.2-1<br>10.8.2-2<br>10.8.2-3<br>11.2.0-1<br>'''11.2.1-1'''</div>
|- style="background:#efe;"
| '''[[../Catalog/atlas|atlas]]'''
| <font color="black">[[#atlas|ATLAS - Automatically Tuned Linear Algebra Software (BLAS and a subset of LAPACK) ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">'''3.8.0-4'''</div>
|-
| '''[[../Catalog/campos|campos]]'''
| <font color="black">[[#campos|Compound: The CAMPOS modelling suite ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">'''stable'''</div>
|- style="background:#efe;"
| '''[[../Catalog/campos-ase3|campos-ase3]]'''
| <font color="black">[[#campos-ase3|ASE is an Atomistic Simulation Environment in Python. ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">'''3.1.0-2'''</div>
|-
| '''[[../Catalog/charm|charm]]'''
| <font color="black">[[#charm|Charm++ - message-passing parallel language and runtime system ]]</font>
| <div style="column-count:1; -moz-column-count:1; -webkit-column-count:1">'''6.0-mpi-linux-x86_64-ifort-mpicxx-1'''<br>6.0-mpi-linux-x86_64-ifort-smp-mpicxx-1<br>6.1b-2009-04-02-mpi-linux-x86_64-ifort-mpicxx-1</div>
|- style="background:#efe;"
| '''[[../Catalog/comsol|comsol]]'''
| <font color="black">[[#comsol|COMSOL Multiphysics simulation software ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">'''4.1-1'''</div>
|-
| '''[[../Catalog/dacapo|dacapo]]'''
| <font color="black">[[#dacapo|Dacapo - a total energy program based on density functional theory ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">2.7.15-ifort-2<br>2.7.15-ifort-3<br>'''2.7.15-ifort-5'''<br>2.7.7</div>
|- style="background:#efe;"
| '''[[../Catalog/dacapo-python|dacapo-python]]'''
| <font color="black">[[#dacapo-python|ASE calculator for Dacapo (python interface) ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">0.9.4-1<br>0.9.4-2<br>0.9.4-3<br>0.9.4-4<br>'''0.9.4-5'''<br>0.9.4-5b<br>2.7.8-1</div>
|-
| '''[[../Catalog/embody|embody]]'''
| <font color="black">[[#embody|EMBODY - Environment Modules Build system ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">0.9<br>0.9.17<br>0.9.18<br>0.9.19<br>0.9.20<br>0.9.21<br>0.9.22<br>'''0.9.23'''</div>
|- style="background:#efe;"
| '''[[../Catalog/fftw3|fftw3]]'''
| <font color="black">[[#fftw3|library for computing the discrete Fourier transform (DFT) ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">3.2.1-1<br>'''3.2.2-1'''</div>
|-
| '''[[../Catalog/g03|g03]]'''
| <font color="black">[[#g03|Gaussian 03 - an electronic structure program ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">C.02.i386-2<br>'''C.02.i386-3'''</div>
|- style="background:#efe;"
| '''[[../Catalog/g09|g09]]'''
| <font color="black">[[#g09|Gaussian 09 - an electronic structure program ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">'''A.02.x86_64-1'''</div>
|-
| '''[[../Catalog/GaussView|GaussView]]'''
| <font color="black">[[#GaussView|GaussView - graphical user interface for Gaussian09 ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">'''5.0-1'''</div>
|- style="background:#efe;"
| '''[[../Catalog/gold|gold]]'''
| <font color="black">[[#gold|Open source accounting system for High Performance Computers ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">'''2.1.11.0-4'''<br>2.1.11.0-5<br>2.1.8.1-1</div>
|-
| '''[[../Catalog/GotoBLAS|GotoBLAS]]'''
| <font color="black">[[#GotoBLAS|Goto BLAS - fast implementation of the Basic Linear Algebra Subroutines ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">1.26-gfortran-1<br>1.26-gfortran-smp-1<br>'''1.26-intel-1'''<br>1.26-intel-smp-1</div>
|- style="background:#efe;"
| '''[[../Catalog/gpaw|gpaw]]'''
| <font color="black">[[#gpaw|GPAW - a grid-based density-functional theory (DFT) Python code ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">0.4-gcc-4<br>0.4-gcc-5<br>0.4-gcc-6<br>0.4.1762-1<br>0.6-gcc-1<br>0.6-gcc-2<br>'''0.6-gcc-3'''</div>
|-
| '''[[../Catalog/gpaw-setups|gpaw-setups]]'''
| <font color="black">[[#gpaw-setups|Pseudopotential data for GPAW (see module gpaw) ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">0.4.2039<br>'''0.5.3574'''<br>0.6.6300</div>
|- style="background:#efe;"
| '''[[../Catalog/gridMathematicaServer|gridMathematicaServer]]'''
| <font color="black">[[#gridMathematicaServer|Parallel computation extension for Mathematica. ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">'''7.0.1-1'''</div>
|-
| '''[[../Catalog/h5utils|h5utils]]'''
| <font color="black">[[#h5utils|utilities for visualization and conversion of scientific data in HDF5 format ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">1.12.1-1<br>1.12.1-2<br>'''1.12.1-3'''</div>
|- style="background:#efe;"
| '''[[../Catalog/harminv|harminv]]'''
| <font color="black">[[#harminv|Harminv - program and library to solve harmonic inversion problems ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">'''1.3.1-mkl-4'''<br>1.3.1-netlib-4</div>
|-
| '''[[../Catalog/hdf5|hdf5]]'''
| <font color="black">[[#hdf5|HDF5 - management of extremely large and complex data collections ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">'''1.8.3-parallel-4'''<br>1.8.3-serial-4</div>
|- style="background:#efe;"
| '''[[../Catalog/jmol|jmol]]'''
| <font color="black">[[#jmol|Molecule viewer for chemical structures in 3D ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">11.8.24-1<br>12.0.24-1<br>'''12.0.34-1'''<br>12.1.25-1<br>12.1.37-1<br>12.1.6-1</div>
|-
| '''[[../Catalog/lammps|lammps]]'''
| <font color="black">[[#lammps|LAMMPS - Sandia's Large-scale Atomic/Molecular Massively Parallel Simulator ]]</font>
| <div style="column-count:1; -moz-column-count:1; -webkit-column-count:1">'''2010-09-09-parallel-1'''<br>2010-12-05-parallel-3</div>
|- style="background:#efe;"
| '''[[../Catalog/layout-beamer|layout-beamer]]'''
| <font color="black">[[#layout-beamer|LayoutBEAMER - layout preparation for e-beam lithography devices ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">3.2.0beta<br>'''3.3.0beta2_64'''<br>3.3.0beta_64<br>3.3.0beta_64-1</div>
|-
| '''[[../Catalog/libctl|libctl]]'''
| <font color="black">[[#libctl|Guile-based library for control files for scientific simulations ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">'''3.0.3-4'''</div>
|- style="background:#efe;"
| '''[[../Catalog/libmatheval|libmatheval]]'''
| <font color="black">[[#libmatheval|library to parse and evaluate symbolic expressions ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">1.1.7-2<br>'''1.1.7-3'''</div>
|-
| '''[[../Catalog/lumerical|lumerical]]'''
| <font color="black">[[#lumerical|Lumerical FDTD Solutions - microscale optics simulation ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">6.0.6-1<br>'''6.5.5-1'''</div>
|- style="background:#efe;"
| '''[[../Catalog/mathematica|mathematica]]'''
| <font color="black">[[#mathematica|Computing environment for modeling, simulation, visualization ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">'''7.0.1-1'''</div>
|-
| '''[[../Catalog/meep|meep]]'''
| <font color="black">[[#meep|finite-difference time-domain (FDTD) simulation software from MIT ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">1.0-parallel-4<br>1.0-parallel-5<br>1.0-serial-4<br>1.0-serial-5<br>'''1.1.1-parallel-1'''<br>1.1.1-serial-1</div>
|- style="background:#efe;"
| '''[[../Catalog/moab|moab]]'''
| <font color="black">[[#moab|Moab Workload Manager - a policy-based job scheduler and event engine ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">5.2.4<br>5.3.3-1<br>5.3.4-1<br>5.3.5-1<br>5.3.6-1<br>5.3.6.s3-1<br>5.3.7.s15018-1<br>5.3.7.s15020-1<br>5.3.7.s15021-1<br>5.4.1-1<br>5.4.2.s16906-1<br>5.4.3-1<br>5.4.4-1<br>6.0.2-1<br>'''6.0.3-1'''</div>
|-
| '''[[../Catalog/molpro|molpro]]'''
| <font color="black">[[#molpro|Quantum chemistry package ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">2009.1-1<br>'''2009.1-2'''</div>
|- style="background:#efe;"
| '''[[../Catalog/namd|namd]]'''
| <font color="black">[[#namd|NAMD - parallel, object-oriented molecular dynamics ]]</font>
| <div style="column-count:1; -moz-column-count:1; -webkit-column-count:1">'''2.6.2009-02-11-Linux-x86_64-MPI-icc-1'''<br>2.7b1-MPI-icc-1</div>
|-
| '''[[../Catalog/netcdf|netcdf]]'''
| <font color="black">[[#netcdf|NetCDF - network Common Data Form libraries ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">3.6.3-gfortran-4<br>3.6.3-gfortran-5<br>3.6.3-intel10-4<br>3.6.3-intel10-5<br>'''3.6.3-intel11-4'''<br>3.6.3-intel11-5</div>
|- style="background:#efe;"
| '''[[../Catalog/Numeric|Numeric]]'''
| <font color="black">[[#Numeric|Numeric was the first arrayobject built for Python. ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">'''24.2-1'''<br>24.2-3</div>
|-
| '''[[../Catalog/numpy|numpy]]'''
| <font color="black">[[#numpy|NumPy is a fundamental package needed for scientific computing with Python. ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">'''1.0.4-mkl-1'''</div>
|- style="background:#efe;"
| '''[[../Catalog/octopus|octopus]]'''
| <font color="black">[[#octopus|Octopus - time-dependent Density-Functional Theory (DFT) ]]</font>
| <div style="column-count:1; -moz-column-count:1; -webkit-column-count:1">'''3.0.1-intel10-mkl10.0.2.018-openmpi13-4'''<br>3.1.0-intel10-mkl10.1.1.019-1<br>3.1.0-intel10-mkl10.1.1.019-openmpi13-1</div>
|-
| '''[[../Catalog/openmpi|openmpi]]'''
| <font color="black">[[#openmpi|Open MPI - A High Performance Message Passing Library ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">1.2.7-gcc<br>1.3-gcc-4<br>1.3-gcc-4.orig<br>1.3-intel10-4<br>1.3-intel11-4<br>1.3.2-gcc-1<br>1.3.2-gcc-1.orig<br>1.3.2-intel10-1<br>1.3.2-intel10-2<br>1.3.2-intel11-1<br>1.4.1-gcc-2<br>1.4.1-intel10-2<br>1.4.1-intel11-1<br>1.4.1-intel11-2<br>1.4.1-intel11-3<br>1.4.1-intel11-4<br>1.4.1-intel11-5<br>1.4.2-intel10-1<br>1.4.2-intel11-1<br>1.4.2-intel12-1<br>1.4.3-gcc-1<br>1.4.3-intel10-1<br>'''1.4.3-intel11-1'''<br>1.4.3-intel12-1</div>
|- style="background:#efe;"
| '''[[../Catalog/pwgui|pwgui]]'''
| <font color="black">[[#pwgui|Quantum ESPRESSO GUI ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">'''4.2-1'''</div>
|-
| '''[[../Catalog/q-chem|q-chem]]'''
| <font color="black">[[#q-chem|Q-Chem - ab initio quantum chemistry package ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">3.2.0.1-1<br>'''3.2.0.2-1'''</div>
|- style="background:#efe;"
| '''[[../Catalog/quantum-espresso|quantum-espresso]]'''
| <font color="black">[[#quantum-espresso|Quantum ESPRESSO suite, with plugins ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">'''4.2.1-2'''</div>
|-
| '''[[../Catalog/rasmol|rasmol]]'''
| <font color="black">[[#rasmol|Fast molecular graphics program ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">2.6.4-foc-1<br>'''2.7.5-1'''</div>
|- style="background:#efe;"
| '''[[../Catalog/ScientificPython|ScientificPython]]'''
| <font color="black">[[#ScientificPython|ScientificPython is a Python library for scientific computing. ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">'''2.4.11-1'''<br>2.4.11-3<br>2.8-1<br>2.8-2</div>
|-
| '''[[../Catalog/siesta|siesta]]'''
| <font color="black">[[#siesta|Spanish Initiative for Electronic Simulations with Thousands of Atoms ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">'''3.0-rc1-3'''</div>
|- style="background:#efe;"
| '''[[../Catalog/vasp|vasp]]'''
| <font color="black">[[#vasp|VASP - Vienna Ab-initio Simulation Package ]]</font>
| <div style="column-count:1; -moz-column-count:1; -webkit-column-count:1">4.6.35-mkl-10<br>'''4.6.35-mkl-11'''<br>4.6.35-mkl-12<br>4.6.35-mkl-7<br>4.6.35-mkl-8<br>4.6.35-mkl-nozheevx-8<br>vasp-4.6.35-3Apr08</div>
|-
| '''[[../Catalog/vasp-vtst|vasp-vtst]]'''
| <font color="black">[[#vasp-vtst|VASP - Vienna Ab-initio Simulation Package ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">4.6.35-mkl-10<br>'''4.6.35-mkl-11'''<br>4.6.35-mkl-12<br>4.6.35-mkl-7<br>4.6.35-mkl-8</div>
|- style="background:#efe;"
| '''[[../Catalog/vasp-vtstscripts|vasp-vtstscripts]]'''
| <font color="black">[[#vasp-vtstscripts|Vasp TST Tools - scripts to help with VASP calculations ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">2.03d-1<br>'''2009-06-12-1'''</div>
|-
| '''[[../Catalog/vasp5|vasp5]]'''
| <font color="black">[[#vasp5|VASP - Vienna Ab-initio Simulation Package ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">5.2-mkl-3<br>5.2-mkl-4<br>5.2-mkl-8<br>5.2.11-mkl-3<br>5.2.11-mkl-tbdyn-4<br>'''5.2.8-mkl-2'''<br>5.2.8-mkl-3</div>
|- style="background:#efe;"
| '''[[../Catalog/vmd|vmd]]'''
| <font color="black">[[#vmd|Mol-Vis for biomolecular systems, with 3-D graphics, built-in scripting ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">1.8.6<br>'''1.8.7-1'''</div>
|-
| '''[[../Catalog/vtk|vtk]]'''
| <font color="black">[[#vtk|VTK - a system for 3D graphics, image processing, and visualization ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">'''5.0.4-icc-3'''</div>
|- style="background:#efe;"
| '''[[../Catalog/wannier90|wannier90]]'''
| <font color="black">[[#wannier90|Maximally-Localised Generalised Wannier Functions Code ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">'''1.2-1'''</div>
|-
| '''[[../Catalog/wien2k|wien2k]]'''
| <font color="black">[[#wien2k|WIEN2k - electronic structure calculations of solids; all-electron DFT LAPW ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">'''09.2-1'''</div>
|- style="background:#efe;"
| '''[[../Catalog/xcrysden|xcrysden]]'''
| <font color="black">[[#xcrysden|Simple molecular viewer with isosurfaces and contours ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">'''1.5.21-1'''</div>
|-
| colspan="3" align="left" style="background:#dde; padding: 10px;" | <font size="+1">''' ''[[#Intel development tools|Intel development tools]]'' '''</font>
|-
| '''[[../Catalog/icc|icc]]'''
| <font color="black">[[#icc|The Intel C/C++ Compiler for the x86_64/EM64T/Intel64 architecture ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">10.0.023<br>10.1.013<br>10.1.015<br>10.1.017<br>10.1.022<br>10.1.025<br>11.0.074<br>11.0.081<br>11.0.083<br>11.1.056<br>11.1.059<br>11.1.064<br>11.1.072<br>'''11.1.073'''</div>
|- style="background:#eef;"
| '''[[../Catalog/icc/10|icc/10]]'''
| <font color="black">[[#icc/10|The Intel C/C++ Compiler for the x86_64/EM64T/Intel64 architecture ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">10.0.023<br>10.1.013<br>10.1.015<br>10.1.017<br>10.1.022<br>'''10.1.025'''</div>
|-
| '''[[../Catalog/icc/11|icc/11]]'''
| <font color="black">[[#icc/11|The Intel C/C++ Compiler for the x86_64/EM64T/Intel64 architecture ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">11.0.074<br>11.0.081<br>11.0.083<br>11.1.056<br>11.1.059<br>11.1.064<br>11.1.072<br>'''11.1.073'''</div>
|- style="background:#eef;"
| '''[[../Catalog/icc/12|icc/12]]'''
| <font color="black">[[#icc/12|The Intel C/C++ Compiler for the x86_64/EM64T/Intel64 architecture ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">12.0.2<br>'''12.0.4'''</div>
|-
| '''[[../Catalog/icc/ia32|icc/ia32]]'''
| <font color="black">[[#icc/ia32|The Intel C/C++ Compiler for the ia32 architecture ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">10.0.023<br>10.1.013<br>10.1.015<br>10.1.017<br>10.1.022<br>10.1.025<br>11.0.074<br>11.0.081<br>11.0.083<br>11.1.056<br>11.1.059<br>11.1.064<br>11.1.072<br>'''11.1.073'''</div>
|- style="background:#eef;"
| '''[[../Catalog/idb|idb]]'''
| <font color="black">[[#idb|The Intel debugger for the x86_64/EM64T/Intel64 architecture ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">10.0.023<br>10.1.013<br>10.1.015<br>10.1.017<br>10.1.022<br>10.1.025<br>11.0.074<br>11.0.081<br>11.0.083<br>11.1.059<br>11.1.064<br>11.1.072<br>'''11.1.073'''</div>
|-
| '''[[../Catalog/idb/10|idb/10]]'''
| <font color="black">[[#idb/10|The Intel debugger for the x86_64/EM64T/Intel64 architecture ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">10.0.023<br>10.1.013<br>10.1.015<br>10.1.017<br>10.1.022<br>'''10.1.025'''</div>
|- style="background:#eef;"
| '''[[../Catalog/idb/11|idb/11]]'''
| <font color="black">[[#idb/11|The Intel debugger for the x86_64/EM64T/Intel64 architecture ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">11.0.074<br>11.0.081<br>11.0.083<br>11.1.059<br>11.1.064<br>11.1.072<br>'''11.1.073'''</div>
|-
| '''[[../Catalog/idb/12|idb/12]]'''
| <font color="black">[[#idb/12|The Intel debugger for the x86_64/EM64T/Intel64 architecture ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">12.0.2<br>'''12.0.4'''</div>
|- style="background:#eef;"
| '''[[../Catalog/idb/ia32|idb/ia32]]'''
| <font color="black">[[#idb/ia32|The Intel debugger for the ia32 architecture ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">10.0.023<br>10.1.013<br>10.1.015<br>10.1.017<br>10.1.022<br>10.1.025<br>11.0.074<br>11.0.081<br>11.0.083<br>11.1.059<br>11.1.064<br>11.1.072<br>'''11.1.073'''</div>
|-
| '''[[../Catalog/ifort|ifort]]'''
| <font color="black">[[#ifort|The Intel Fortran Compiler for the x86_64/EM64T/Intel64 architecture ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">10.0.023<br>10.1.013<br>10.1.015<br>10.1.017<br>10.1.022<br>10.1.025<br>11.0.074<br>11.0.081<br>11.0.083<br>11.1.056<br>11.1.059<br>11.1.064<br>11.1.072<br>'''11.1.073'''</div>
|- style="background:#eef;"
| '''[[../Catalog/ifort/10|ifort/10]]'''
| <font color="black">[[#ifort/10|The Intel Fortran Compiler for the x86_64/EM64T/Intel64 architecture ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">10.0.023<br>10.1.013<br>10.1.015<br>10.1.017<br>10.1.022<br>'''10.1.025'''</div>
|-
| '''[[../Catalog/ifort/11|ifort/11]]'''
| <font color="black">[[#ifort/11|The Intel Fortran Compiler for the x86_64/EM64T/Intel64 architecture ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">11.0.074<br>11.0.081<br>11.0.083<br>11.1.056<br>11.1.059<br>11.1.064<br>11.1.072<br>'''11.1.073'''</div>
|- style="background:#eef;"
| '''[[../Catalog/ifort/12|ifort/12]]'''
| <font color="black">[[#ifort/12|The Intel Fortran Compiler for the x86_64/EM64T/Intel64 architecture ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">'''12.0.2'''</div>
|-
| '''[[../Catalog/ifort/ia32|ifort/ia32]]'''
| <font color="black">[[#ifort/ia32|The Intel Fortran Compiler for the ia32 architecture ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">10.0.023<br>10.1.013<br>10.1.015<br>10.1.017<br>10.1.022<br>10.1.025<br>11.0.074<br>11.0.081<br>11.0.083<br>11.1.056<br>11.1.059<br>11.1.064<br>11.1.072<br>'''11.1.073'''</div>
|- style="background:#eef;"
| '''[[../Catalog/impi|impi]]'''
| <font color="black">[[#impi|The Intel MPI implementation for the x86_64/EM64T/Intel64 architecture ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">3.0<br>3.1<br>3.2.0.011<br>3.2.2.006<br>'''4.0.0.025'''<br>4.0.0.028<br>4.0.1.007<br>4.0.2.003</div>
|-
| '''[[../Catalog/impi/ia32|impi/ia32]]'''
| <font color="black">[[#impi/ia32|The Intel MPI implementation for the ia32 architecture ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">3.0<br>3.1<br>3.2.0.011<br>'''3.2.2.006'''</div>
|- style="background:#eef;"
| '''[[../Catalog/intel|intel]]'''
| <font color="black">[[#intel|Compound: Intel compilers and MKL version 11 ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">10.1.015<br>10.1.022<br>11.0.074<br>'''11.0.081'''</div>
|-
| '''[[../Catalog/intel-licenses|intel-licenses]]'''
| <font color="black">[[#intel-licenses|Enable non-version-specific licenses for the Intel compilers and libraries ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4"></div>
|- style="background:#eef;"
| '''[[../Catalog/intel/10|intel/10]]'''
| <font color="black">[[#intel/10|Compound: Intel compilers version 10 ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">10.1.015<br>10.1.022<br>'''10.1.025'''</div>
|-
| '''[[../Catalog/intel/11|intel/11]]'''
| <font color="black">[[#intel/11|Compound: Intel compilers and MKL version 11 ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4">11.0.074<br>11.0.081<br>11.0.083<br>11.1.056<br>11.1.064<br>'''11.1.073'''</div>
|- style="background:#eef;"
| '''[[../Catalog/mkl|mkl]]'''
| <font color="black">[[#mkl|The Intel Math Kernel Library for the x86_64/EM64T/Intel64 architecture ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">10.0.005<br>10.0.2.018<br>10.0.3.020<br>10.0.4.023<br>10.1.0.015<br>10.1.1.019<br>10.1.2.024<br>10.2.2.025<br>10.2.3.029<br>10.2.4.032<br>10.2.5.035<br>'''10.2.6.038'''<br>10.3.2<br>10.3.4<br>9.1.023</div>
|-
| '''[[../Catalog/mkl/ia32|mkl/ia32]]'''
| <font color="black">[[#mkl/ia32|The Intel Math Kernel Library for the ia32 architecture ]]</font>
| <div style="column-count:2; -moz-column-count:2; -webkit-column-count:2">10.0.005<br>10.0.2.018<br>10.0.3.020<br>10.0.4.023<br>10.1.0.015<br>10.1.1.019<br>10.1.2.024<br>10.2.2.025<br>10.2.3.029<br>10.2.4.032<br>10.2.5.035<br>10.2.6.038<br>'''9.1.023'''</div>
|-
| colspan="3" align="left" style="background:#ddd; padding: 10px;" | <font size="+1">''' ''[[#Default modules|Default modules]]'' '''</font>
|-
| '''[[../Catalog/dot|dot]]'''
| <font color="black">[[#dot|adds `.' to your PATH environment variable ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4"></div>
|- style="background:#eee;"
| '''[[../Catalog/module-cvs|module-cvs]]'''
| <font color="black">[[#module-cvs|get most recent module sources from CVS or ftp ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4"></div>
|-
| '''[[../Catalog/module-info|module-info]]'''
| <font color="black">[[#module-info|returns all various module-info values ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4"></div>
|- style="background:#eee;"
| '''[[../Catalog/modules|modules]]'''
| <font color="black">[[#modules|loads the modules environment ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4"></div>
|-
| '''[[../Catalog/null|null]]'''
| <font color="black">[[#null|does absolutely nothing ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4"></div>
|- style="background:#eee;"
| '''[[../Catalog/use.own|use.own]]'''
| <font color="black">[[#use.own|adds your own modulefiles directory to MODULEPATH ]]</font>
| <div style="column-count:4; -moz-column-count:4; -webkit-column-count:4"></div>
|- style="background:#ccc;"
! Name
! Summary
! Versions
|-
|}


<font size="-1">
== Development tools ==
Key to columns
<div style="column-count:2">
* '''Name''': Where available, entry links to [[HPC|module-specific pages]]; otherwise entry [[_no_details_yet|contains no link]].
* [[HPC/Applications/matlab                | MATLAB]]
* '''Summary''': Links lead to the brief module descriptions below.
* [[HPC/Applications/python                 | Python]]
* '''Versions''': The version shown in '''bold''' is the default.
* [[HPC/Applications/cuda                  | CUDA]]
</font>
* [[HPC/Applications/fftw3                 | FFTW3]]
 
* [[HPC/Applications/impi                  | Intel MPI]]
== Carbon applications ==
* [[HPC/Applications/openmpi                | OpenMPI]]
<code>/opt/soft</code>
* [[HPC/Applications/mkl                   | Intel MKL]]
<div style="background:#efe;">
</div>
 
=== [[../Catalog/asap|asap]] ===
 
- '''3.2.0-1'''
:ASAP (As Soon As Possible) is a calculator for doing large-scale classical molecular dynamics within the Campos Atomic Simulation Environment (ASE).  ASAP currently implements the Effective Medium Potential (EMT) for the elements Ni, Cu, Pd, Ag, Pt and Au (and their alloys). There is also experimental support for Mg and Mo.  ASAP supports simulations on parallel clusters.
:https://wiki.fysik.dtu.dk/asap/
 
=== [[../Catalog/asap3|asap3]] ===
 
- '''3.2.0-1'''
:ASAP (As Soon As Possible) is a calculator for doing large-scale classical molecular dynamics within the Campos Atomic Simulation Environment (ASE).  ASAP currently implements the Effective Medium Potential (EMT) for the elements Ni, Cu, Pd, Ag, Pt and Au (and their alloys). There is also experimental support for Mg and Mo.  ASAP supports simulations on parallel clusters.
:https://wiki.fysik.dtu.dk/asap/
 
=== [[../Catalog/ase2|ase2]] ===
 
- '''2.3.13-1''', 2.3.13-2, 2.3.13-3
:The Atomic Simulation Environment (ASE) is the common part of the simulation tools developed at CAMd. ASE provides Python modules for manipulating atoms, analyzing simulations, visualization etc.
:The CAMPOS Atomic Simulation Environment is released under GPL2.
:NOTE: ASE-2.x is no longer maintained but required for Dacapo.
:https://wiki.fysik.dtu.dk/ase2/
 
=== [[../Catalog/ase3|ase3]] ===
 
- 3.0.0-3, 3.2.0-1, '''3.2.0-3''', 3.4.1-1
:The Atomic Simulation Environment (ASE) is the common part of the simulation tools developed at CAMd. ASE provides Python modules for manipulating atoms, analyzing simulations, visualization etc.
:The CAMPOS Atomic Simulation Environment is released under GPL2.
:https://wiki.fysik.dtu.dk/ase/
 
=== [[../Catalog/atk|atk]] ===
 
- 10.8.0-1, 10.8.1-1, 10.8.2-1, 10.8.2-2
:Atomistix ToolKit - a quantum-mechanical modeling package
:* atomic-scale electrical transport properties of nanodevices
:* open architecture
:* scripting language and graphical user interface
:* accurate first-principles and fast semi-empirical methods.
:* handles large-scale systems with upwards of 1,000 atoms
:* advanced electrostatic model
:* geometry optimization of molecules and periodic structures
:http://www.quantumwise.com/
 
- 10.8.2-3, 11.2.0-1, '''11.2.1-1'''
:Atomistix ToolKit - a quantum-mechanical modeling package
:* atomic-scale electrical transport properties of nanodevices
:* open architecture
:* scripting language and graphical user interface
:* accurate first-principles and fast semi-empirical methods.
:* handles large-scale systems with upwards of 1,000 atoms
:* advanced electrostatic model
:* geometry optimization of molecules and periodic structures
:Note: This module should be loaded BEFORE vasp.
:http://www.quantumwise.com/
 
=== [[../Catalog/atlas|atlas]] ===
 
- '''3.8.0-4'''
:The ATLAS (Automatically Tuned Linear Algebra Software) project is an ongoing research effort focusing on applying empirical techniques in order to provide portable performance. At present, it provides C and Fortran77 interfaces to a portably efficient BLAS implementation, as well as a few routines from LAPACK.
:http://math-atlas.sourceforge.net/
 
=== [[../Catalog/campos|campos]] ===
 
- '''stable'''
:Compound: The CAMPOS modelling suite
:vtk Numeric  ScientificPython ase2  ase3  dacapo  dacapo-python gpaw-setups  gpaw
:Details at the individual modules
 
=== [[../Catalog/campos-ase3|campos-ase3]] ===
 
- '''3.1.0-2'''
:The Atomic Simulation Environment (ASE) is the common part of the simulation tools developed at CAMd. ASE provides Python modules for manipulating atoms, analyzing simulations, visualization etc.
:The CAMPOS Atomic Simulation Environment is released under GPL2.
:https://wiki.fysik.dtu.dk/ase/
 
=== [[../Catalog/charm|charm]] ===
 
- '''6.0-mpi-linux-x86_64-ifort-mpicxx-1''', 6.1b-2009-04-02-mpi-linux-x86_64-ifort-mpicxx-1
:Charm++ is a message-passing parallel language and runtime system. It is implemented as a set of libraries for C++, is efficient, and is portable to a wide variety of parallel machines. Source code is provided, and non-commercial use is free.
:This version was compiled for mpi-linux-x86_64-ifort-mpicxx
:Copyright (C) 1989-2000 Regents of the University of Illinois http://charm.cs.uiuc.edu/
 
- 6.0-mpi-linux-x86_64-ifort-smp-mpicxx-1
:Charm++ is a message-passing parallel language and runtime system. It is implemented as a set of libraries for C++, is efficient, and is portable to a wide variety of parallel machines. Source code is provided, and non-commercial use is free.
:This version was compiled for mpi-linux-x86_64-ifort-smp-mpicxx
:Copyright (C) 1989-2000 Regents of the University of Illinois http://charm.cs.uiuc.edu/
 
=== [[../Catalog/comsol|comsol]] ===
 
- '''4.1-1'''
:Continuum-level simulation software including modeler and visualization.
:* fluid flow (CFD)
:* heat transfer
:* structural mechanics
:* electromagnetics
:Material properties, source terms and boundary conditions can be arbitrary functions of the dependent variables.
:http://www.comsol.com/products/multiphysics/
 
=== [[../Catalog/dacapo|dacapo]] ===
 
- 2.7.15-ifort-2, 2.7.15-ifort-3, '''2.7.15-ifort-5'''
:Dacapo is a total energy program based on density functional theory. It uses a plane wave basis for the valence electronic states and describes the core-electron interactions with Vanderbilt ultrasoft pseudo-potentials.
:The program performs self-consistent calculations for both Local Density Approximation (LDA) and various Generalized Gradient Approximation (GGA) exchange-correlations potentials, using state-of-art iterative algorithms. The code may perform molecular dynamics / structural relaxation simultaneous with solving the Schroedinger equations within density functional theory.
:https://wiki.fysik.dtu.dk/dacapo/Dacapo
 
- 2.7.7
:Dacapo is a total energy program based on density functional theory. It uses a plane wave basis for the valence electronic states and describes the core-electron interactions with Vanderbilt ultrasoft pseudo-potentials.
:The program performs self-consistent calculations for both Local Density Approximation (LDA) and various Generalized Gradient Approximation (GGA) exchange-correlations potentials, using state-of-art iterative algorithms. The code may perform molecular dynamics / structural relaxation simultaneous with solving the Schroedinger equations within density functional theory.
:This is a fairly old build from Jan. 2008.
:https://wiki.fysik.dtu.dk/dacapo/Dacapo
 
=== [[../Catalog/dacapo-python|dacapo-python]] ===
 
- 0.9.4-1, 0.9.4-2, 0.9.4-3, 0.9.4-4, '''0.9.4-5''', 0.9.4-5b, 2.7.8-1
:This is the ASE calculator interface for Dacapo.
:https://wiki.fysik.dtu.dk/dacapo/Installation#dacapo-python-interface
 
=== [[../Catalog/embody|embody]] ===
 
- 0.9
:EMBODY (Environment Modules Build) is a simple build tool with support for the Environment-Modules package.
:The tool eases and automates the task of building and installing software packages from source, as well as the management of associated modulefiles.
:Michael Sternberg, 2009-01
 
- 0.9.17, 0.9.18
:EMBODY (Environment Modules Build) is a build tool with support for the environment-modules package at http://modules.sourceforge.net/.
:The tool eases and automates the task of building and installing software from source or binary packages, and integrated the management of associated modulefiles.
:(C) 2009, Michael Sternberg; https://trac.anl.gov/embody/
 
- 0.9.19, 0.9.20, 0.9.21, 0.9.22, '''0.9.23'''
:EMBODY (Environment Modules Build) is a build tool with support for the environment-modules package at http://modules.sourceforge.net/.
:The tool eases and automates the task of building and installing software from source or binary packages, and integrated the management of associated modulefiles.
:Copyright (C) 2009, UChicago Argonne, LLC; All Rights Reserved.
 
=== [[../Catalog/fftw3|fftw3]] ===
 
- 3.2.1-1, '''3.2.2-1'''
:FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) in one or more dimensions, of arbitrary input size, and of both real and complex data (as well as of even/odd data, i.e. the discrete cosine/sine transforms or DCT/DST). FFTW is free software and is highly recommended as FFT library of choice for most applications.
:http://www.fftw.org/
 
=== [[../Catalog/g03|g03]] ===
 
- C.02.i386-2, '''C.02.i386-3'''
:Gaussian 03 is the latest in the Gaussian series of electronic structure programs. Gaussian 03 is used by chemists, chemical engineers, biochemists, physicists and others for research in established and emerging areas of chemical interest.
:Starting from the basic laws of quantum mechanics, Gaussian predicts the energies, molecular structures, and vibrational frequencies of molecular systems, along with numerous molecular properties derived from these basic computation types. It can be used to study molecules and reactions under a wide range of conditions, including both stable species and compounds which are difficult or impossible to observe experimentally such as short-lived intermediates and transition structures. This article introduces several of its new and enhanced features.
:Available to Argonne users only.
:http://gaussian.com/
 
=== [[../Catalog/g09|g09]] ===
 
- '''A.02.x86_64-1'''
:Gaussian 09 is the latest in the Gaussian series of electronic structure programs. Gaussian 09 is used by chemists, chemical engineers, biochemists, physicists and others for research in established and emerging areas of chemical interest.
:Starting from the basic laws of quantum mechanics, Gaussian predicts the energies, molecular structures, and vibrational frequencies of molecular systems, along with numerous molecular properties derived from these basic computation types. It can be used to study molecules and reactions under a wide range of conditions, including both stable species and compounds which are difficult or impossible to observe experimentally such as short-lived intermediates and transition structures. This article introduces several of its new and enhanced features.
:Available only to Argonne employees and students under confidentiality.
:http://gaussian.com/ Help on running with Linda:  http://gaussian.com/g_tech/g_ur/m_linda.htm
 
=== [[../Catalog/GaussView|GaussView]] ===
 
- '''5.0-1'''
:GaussView is a graphical user interface designed to help you prepare input for submission to Gaussian and to examine graphically the output that Gaussian produces. GaussView is not integrated with the computational module of Gaussian, but rather is a front-end/back-end processor to aid in the use of Gaussian.
:http://gaussian.com/g_tech/gv5ref/gv5ref_toc.htm
 
=== [[../Catalog/gold|gold]] ===
 
- '''2.1.11.0-4''', 2.1.11.0-5, 2.1.8.1-1
:Gold is an open source accounting system developed by Pacific Northwest National Laboratory (PNNL) as part of the Department of Energy (DOE) Scalable Systems Software Project (SSS). It tracks resource usage on High Performance Computers and acts much like a bank, establishing accounts in order to pre-allocate user and project resource usage over specific nodes and timeframe. Gold provides balance and usage feedback to users, managers, and system administrators.
:http://www.clusterresources.com/pages/products/gold-allocation-manager.php
 
=== [[../Catalog/GotoBLAS|GotoBLAS]] ===
 
- '''1.26-intel-1'''
:The GotoBLAS codes are fast implementations of the Basic Linear Algebra Subroutines, written by Kazushige Goto  /goat-toe/.
:The performance depends in part on the code from which you call the GotoBLAS subroutine(s) and on the combination of architecture and operating system under which you are running. Your own tuning here can make a big difference.
:This version was compiled using: COMPILER_OPTION='BINARY64=1 F_COMPILER=INTEL'
:http://www.tacc.utexas.edu/resources/software/software.php
 
- 1.26-gfortran-1
:The GotoBLAS codes are fast implementations of the Basic Linear Algebra Subroutines, written by Kazushige Goto  /goat-toe/.
:The performance depends in part on the code from which you call the GotoBLAS subroutine(s) and on the combination of architecture and operating system under which you are running. Your own tuning here can make a big difference.
:This version was compiled using: COMPILER_OPTION='BINARY64=1 F_COMPILER=GFORTRAN'
:http://www.tacc.utexas.edu/resources/software/software.php
 
- 1.26-gfortran-smp-1
:The GotoBLAS codes are fast implementations of the Basic Linear Algebra Subroutines, written by Kazushige Goto  /goat-toe/.
:The performance depends in part on the code from which you call the GotoBLAS subroutine(s) and on the combination of architecture and operating system under which you are running. Your own tuning here can make a big difference.
:This version was compiled using: COMPILER_OPTION='BINARY64=1 F_COMPILER=GFORTRAN  SMP=1'
:http://www.tacc.utexas.edu/resources/software/software.php
 
- 1.26-intel-smp-1
:The GotoBLAS codes are fast implementations of the Basic Linear Algebra Subroutines, written by Kazushige Goto  /goat-toe/.
:The performance depends in part on the code from which you call the GotoBLAS subroutine(s) and on the combination of architecture and operating system under which you are running. Your own tuning here can make a big difference.
:This version was compiled using: COMPILER_OPTION='BINARY64=1 F_COMPILER=INTEL    SMP=1'
:http://www.tacc.utexas.edu/resources/software/software.php
 
=== [[../Catalog/gpaw|gpaw]] ===
 
- 0.4-gcc-4, 0.4-gcc-5, 0.4-gcc-6, 0.6-gcc-1, 0.6-gcc-2, '''0.6-gcc-3'''
:GPAW is a density-functional theory (DFT) Python code based on the projector-augmented wave (PAW) method.  It uses real-space uniform grids and multigrid methods or atom-centered basis-functions. It features flexible boundary conditions, k-points and gradient corrected exchange-correlation functionals.
:https://wiki.fysik.dtu.dk/gpaw/
 
- 0.4.1762-1
:GPAW is a density-functional theory (DFT) Python code based on the projector-augmented wave (PAW) method.  It uses real-space uniform grids and multigrid methods or atom-centered basis-functions.
:https://wiki.fysik.dtu.dk/gpaw/
 
=== [[../Catalog/gpaw-setups|gpaw-setups]] ===
 
- 0.4.2039, '''0.5.3574''', 0.6.6300
:Pseudopotential data for GPAW (see module gpaw).
:https://wiki.fysik.dtu.dk/gpaw/
 
=== [[../Catalog/gridMathematicaServer|gridMathematicaServer]] ===
 
- '''7.0.1-1'''
:gridMathematica enables parallel computations in Mathematica.
:http://www.wolfram.com/
 
=== [[../Catalog/h5utils|h5utils]] ===
 
- 1.12.1-1, 1.12.1-2, '''1.12.1-3'''
:h5utils is a set of utilities for visualization and conversion of scientific data in the free, portable HDF5 format.  Besides providing a simple tool for batch visualization as PNG images, h5utils also includes programs to convert HDF5 datasets into the formats required by other free visualization software (e.g. plain text, Vis5d, and VTK).
:http://ab-initio.mit.edu/wiki/index.php/H5utils
 
=== [[../Catalog/harminv|harminv]] ===
 
- '''1.3.1-mkl-4''', 1.3.1-netlib-4
:Harminv is a program and accompanying library to solve the problem of harmonic inversion -- given a discrete-time, finite-length signal that consists of a sum of finitely-many sinusoids (possibly exponentially decaying) in a given bandwidth, it determines the frequencies, decay constants, amplitudes, and phases of those sinusoids.
:http://ab-initio.mit.edu/wiki/index.php/Harminv
 
=== [[../Catalog/hdf5|hdf5]] ===
 
- '''1.8.3-parallel-4''', 1.8.3-serial-4
:The HDF5 suite includes:
:* A data model that can represent complex data objects and metadata.
:* A portable file format with no limit on the number or size of data objects.
:* A portable library with high-level APIs for C, C++, Fortran 90, and Java.
:* Tools and applications.
:The HDF5 data model, file format, API, library, and tools are open and distributed without charge.
:http://www.hdfgroup.org/HDF5/
 
=== [[../Catalog/jmol|jmol]] ===
 
- 11.8.24-1, 12.0.24-1, '''12.0.34-1''', 12.1.25-1, 12.1.37-1, 12.1.6-1
:Jmol is a molecule viewer platform for researchers in chemistry and biochemistry, implemented in Java for multi-platform use.  This is the standalone application.  It offers high-performance 3D rendering with no hardware requirements and supports many popular file formats.
:http://jmol.sourceforge.net/ http://wiki.jmol.org/
 
=== [[../Catalog/lammps|lammps]] ===
 
- '''2010-09-09-parallel-1'''
:LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator)
:LAMMPS has potentials for soft materials (biomolecules, polymers) and solid-state materials (metals, semiconductors) and coarse-grained or mesoscopic systems. It can be used to model atoms or, more generically, as a parallel particle simulator at the atomic, meso, or continuum scale.
:LAMMPS runs on single processors or in parallel using message-passing techniques and a spatial-decomposition of the simulation domain. The code is designed to be easy to modify or extend with new functionality.
:This version has been compiled with support for the following modules: kspace manybody meam molecule poems reax atc
:LAMMPS is open source, distributed by Sandia National Laboratories.
:http://lammps.sandia.gov/
 
- 2010-12-05-parallel-3
:LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator)
:LAMMPS has potentials for soft materials (biomolecules, polymers) and solid-state materials (metals, semiconductors) and coarse-grained or mesoscopic systems. It can be used to model atoms or, more generically, as a parallel particle simulator at the atomic, meso, or continuum scale.
:LAMMPS runs on single processors or in parallel using message-passing techniques and a spatial-decomposition of the simulation domain. The code is designed to be easy to modify or extend with new functionality.
:This version has been compiled with support for the following modules: class2 colloid kspace manybody meam molecule poems reax atc
:LAMMPS is open source, distributed by Sandia National Laboratories.
:http://lammps.sandia.gov/
 
=== [[../Catalog/layout-beamer|layout-beamer]] ===
 
- 3.2.0beta, '''3.3.0beta2_64''', 3.3.0beta_64, 3.3.0beta_64-1
:LayoutBEAMER is a tool for the preparation of layout data for e-beam lithography devices.
:http://www.genisys-gmbh.com/
 
=== [[../Catalog/libctl|libctl]] ===
 
- '''3.0.3-4'''
:libctl is a Guile-based library implementing flexible control files for scientific simulations. It was written to support the MIT Photonic Bands and Meep software, but has proven useful in other programs too.
:http://ab-initio.mit.edu/wiki/index.php/Libctl
 
=== [[../Catalog/libmatheval|libmatheval]] ===
 
- 1.1.7-2, '''1.1.7-3'''
:GNU libmatheval is a library (callable from C and Fortran) to parse and evaluate symbolic expressions input as text. It supports expressions in any number of variables of arbitrary names, decimal and symbolic constants, basic unary and binary operators, and elementary mathematical functions. In addition to parsing and evaluation, libmatheval can also compute symbolic derivatives and output expressions to strings.
:http://www.gnu.org/software/libmatheval/
 
=== [[../Catalog/lumerical|lumerical]] ===
 
- 6.0.6-1, '''6.5.5-1'''
:Lumerical FDTD Solutions is a high performance microscale optics simulation software.  Employing a finite-difference time-domain (FDTD) algorithm, FDTD Solutions allows study of light propagation on the nanoscale.
:http://www.lumerical.com/fdtd.php
 
=== [[../Catalog/mathematica|mathematica]] ===
 
- '''7.0.1-1'''
:Mathematica is an extensive computer algebra system.  Features include:
:* Elementary mathematical function library
:* Special mathematical function library
:* Matrix and data manipulation tools including support for sparse arrays
:* Support for complex number, arbitrary precision, interval arithmetic and symbolic computation
:* 2D and 3D data and function visualization and animation tools
:* Solvers for systems of equations, diophantine equations, ODEs, PDEs, DAEs, DDEs and recurrence relations
:* Numeric and symbolic tools for discrete and continuous calculus
:* Multivariate statistics libraries
:* Constrained and unconstrained local and global optimization
:* Programming language supporting procedural, functional and object oriented constructs
:* Toolkit for adding user interfaces to calculations and applications
:* Tools for image processing and morphological image processing
:* Tools for visualizing and analysing graphs
:* Tools for combinatoric problems
:* Data mining tools such as cluster analysis, sequence alignment and pattern matching
:* Number theory function library
:* Continuous and discrete integral transforms
:* Import and export filters for data, images, video, sound, CAD, GIS, document and biomedical formats
:* Database collection for mathematical, scientific, and socio-economic information
:* Notebook interface for review and re-use of previous inputs and outputs including graphics and text annotations
:* Technical word processing including formula editing and automated report generating
:* Tools for connecting to SQL, Java, .NET, C++, FORTRAN and http based systems
:* Tools for parallel programing
:http://www.wolfram.com/
 
=== [[../Catalog/meep|meep]] ===
 
- 1.0-parallel-4, 1.0-parallel-5, 1.0-serial-4, 1.0-serial-5, '''1.1.1-parallel-1''', 1.1.1-serial-1
:MEEP (MIT Electromagnetic Equation Propagation) is a finite-difference time-domain (FDTD) simulation software package developed at MIT to model electromagnetic systems, along with the MPB eigenmode package.
:http://ab-initio.mit.edu/meep/meep-1.0.tar.gz
 
=== [[../Catalog/moab|moab]] ===
 
- 5.2.4, 5.3.3-1, 5.3.4-1, 5.3.5-1, 5.3.6-1, 5.3.6.s3-1, 5.3.7.s15018-1, 5.3.7.s15020-1, 5.3.7.s15021-1, 5.4.1-1, 5.4.2.s16906-1, 5.4.3-1, 5.4.4-1, 6.0.2-1, '''6.0.3-1'''
:Moab Workload Manager is a policy-based job scheduler and event engine that enables utility-based computing for clusters. It simplifies management across one or multiple hardware, operating system, storage, network, license and resource manager environments to increase the ROI of clustered resources, improve system utilization to run between 90-99 percent, and allow for expansion.
:Moab Workload Manager combines intelligent scheduling of resources with advanced reservations to process jobs on the right resources at the right time. It also provides flexible policy and event engines that process workloads faster and in line with set business requirements and priorities.
:http://www.clusterresources.com/pages/products/moab-cluster-suite/
 
=== [[../Catalog/molpro|molpro]] ===
 
- 2009.1-1, '''2009.1-2'''
:Molpro is a system of ab initio programs for molecular electronic structure calculations.  The emphasis is on highly accurate computations, with extensive treatment of the electron correlation problem through the multiconfiguration-reference CI, coupled cluster and associated methods. Integral-direct local electron correlation methods reduce computational scaling.
:Available for Argonne users.
:http://www.molpro.net/
 
=== [[../Catalog/namd|namd]] ===
 
- '''2.6.2009-02-11-Linux-x86_64-MPI-icc-1''', 2.7b1-MPI-icc-1
:NAMD is a parallel, object-oriented molecular dynamics code designed for high-performance simulation of large biomolecular systems. NAMD is distributed free of charge and includes source code.
:Subject to Univ. of Illinois Non-Exclusive, Non-Commercial Use License.
:The NAMD project is funded by the National Institutes of Health (grant number PHS 5 P41 RR05969).
:http://www.ks.uiuc.edu/Research/NAMD/
 
=== [[../Catalog/netcdf|netcdf]] ===
 
- '''3.6.3-intel11-4'''
:NetCDF (network Common Data Form) is a set of software libraries and machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data.
:This version uses the intel/11.0.081 compilers.
:http://www.unidata.ucar.edu/software/netcdf/
 
- 3.6.3-gfortran-4, 3.6.3-gfortran-5
:NetCDF (network Common Data Form) is a set of software libraries and machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data.
:This version uses the GNU compilers.
:http://www.unidata.ucar.edu/software/netcdf/
 
- 3.6.3-intel10-4
:NetCDF (network Common Data Form) is a set of software libraries and machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data.
:This version uses the intel/10.1.022 compilers.
:http://www.unidata.ucar.edu/software/netcdf/
 
- 3.6.3-intel10-5
:NetCDF (network Common Data Form) is a set of software libraries and machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data.
:This version uses the icc/10.1.025 ifort/10.1.025 compilers.
:http://www.unidata.ucar.edu/software/netcdf/
 
- 3.6.3-intel11-5
:NetCDF (network Common Data Form) is a set of software libraries and machine-independent data formats that support the creation, access, and sharing of array-oriented scientific data.
:This version uses the icc/11.1.064 ifort/11.1.064 compilers.
:http://www.unidata.ucar.edu/software/netcdf/
 
=== [[../Catalog/Numeric|Numeric]] ===
 
- '''24.2-1'''
:Numeric was the first arrayobject built for Python.  It has been quite successful and is used in a wide variety of settings and applications.  Maintenance has ceased for Numeric, and users should transisition to NumPy as quickly as possible.
:This package is needed for Dacapo.
:http://numpy.scipy.org/#older_array
 
- 24.2-3
:Numeric is a Python module for high-performance, numeric computing. It provides much of the functionality and performance of commercial numeric software such as Matlab; in some cases, it provides more functionality than commercial software.
 
=== [[../Catalog/numpy|numpy]] ===
 
- '''1.0.4-mkl-1'''
:NumPy is a fundamental package needed for scientific computing with Python. It contains:
:* a powerful N-dimensional array object
:* sophisticated broadcasting functions
:* basic linear algebra functions
:* basic Fourier transforms
:* sophisticated random number capabilities
:* tools for integrating Fortran code.
:* tools for integrating C/C++ code.
:This version uses the Intel MKL libraries.  There is also an OS version which uses the OS versions of blas and lapack.
:WARNING: This package is currently unstable and may lead to MPI errors and segfaults.
:http://numpy.scipy.org/
 
=== [[../Catalog/octopus|octopus]] ===
 
- '''3.0.1-intel10-mkl10.0.2.018-openmpi13-4'''
:Octopus is an ab initio virtual experimentation program for a range of systems. Electrons are described quantum-mechanically within the Density-Functional Theory (DFT), in its time-dependent form (TDDFT) when doing simulations in time. Nuclei are described classically as point particles. Electron-nucleus interaction is described within the Pseudopotential approximation.
:This version was built with:
:* intel/10.1.02210.1.022 mkl/10.0.2.018
:* openmpi/1.3-intel10-4
:* netcdf/3.6.3-intel10-4
:Octopus is free software, released under the GPL license, so you are free to use it and modify it.
:http://www.tddft.org/programs/octopus/
 
- 3.1.0-intel10-mkl10.1.1.019-1
:Octopus is an ab initio virtual experimentation program for a range of systems. Electrons are described quantum-mechanically within the Density-Functional Theory (DFT), in its time-dependent form (TDDFT) when doing simulations in time. Nuclei are described classically as point particles. Electron-nucleus interaction is described within the Pseudopotential approximation.
:This version was built with:
:* intel/10/10.1.02210/10.1.022 mkl/10.1.1.019
:* without MPI
:* netcdf/3.6.3-intel10-4
:Octopus is free software, released under the GPL license, so you are free to use it and modify it.
:http://www.tddft.org/programs/octopus/
 
- 3.1.0-intel10-mkl10.1.1.019-openmpi13-1
:Octopus is an ab initio virtual experimentation program for a range of systems. Electrons are described quantum-mechanically within the Density-Functional Theory (DFT), in its time-dependent form (TDDFT) when doing simulations in time. Nuclei are described classically as point particles. Electron-nucleus interaction is described within the Pseudopotential approximation.
:This version was built with:
:* intel/10/10.1.02210/10.1.022 mkl/10.1.1.019
:* openmpi/1.3.2-intel10-1
:* netcdf/3.6.3-intel10-4
:Octopus is free software, released under the GPL license, so you are free to use it and modify it.
:http://www.tddft.org/programs/octopus/
 
=== [[../Catalog/openmpi|openmpi]] ===
 
- '''1.4.3-intel11-1'''
:Open MPI is an open source, freely available implementation of both the MPI-1 and MPI-2 standards, combining technologies and resources from several other projects (FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI) in order to build the best MPI library available.  A completely new MPI-2 compliant implementation, Open MPI offers advantages for system and software vendors, application developers, and computer science researchers.
:This version uses the icc/11 ifort/11 compilers for mpicc, mpif90, etc.
:http://www.open-mpi.org/
 
- 1.2.7-gcc
:The Open MPI Project is an open source MPI-2 implementation that is developed and maintained by a consortium of academic, research, and industry partners. Open MPI is therefore able to combine the expertise, technologies, and resources from all across the High Performance Computing community in order to build the best MPI library available.
:This version uses the Intel compilers for mpicc, mpif90, etc.
:http://www.open-mpi.org/
 
- 1.3-gcc-4, 1.3-gcc-4.orig, 1.3.2-gcc-1, 1.3.2-gcc-1.orig, 1.4.1-gcc-2, 1.4.3-gcc-1
:Open MPI is an open source, freely available implementation of both the MPI-1 and MPI-2 standards, combining technologies and resources from several other projects (FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI) in order to build the best MPI library available.  A completely new MPI-2 compliant implementation, Open MPI offers advantages for system and software vendors, application developers, and computer science researchers.
:This version uses the GNU compilers for mpicc, mpif90, etc.
:http://www.open-mpi.org/
 
- 1.3-intel10-4
:Open MPI is an open source, freely available implementation of both the MPI-1 and MPI-2 standards, combining technologies and resources from several other projects (FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI) in order to build the best MPI library available.  A completely new MPI-2 compliant implementation, Open MPI offers advantages for system and software vendors, application developers, and computer science researchers.
:This version uses the intel/10.1.022 compilers for mpicc, mpif90, etc.
:http://www.open-mpi.org/
 
- 1.3-intel11-4
:Open MPI is an open source, freely available implementation of both the MPI-1 and MPI-2 standards, combining technologies and resources from several other projects (FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI) in order to build the best MPI library available.  A completely new MPI-2 compliant implementation, Open MPI offers advantages for system and software vendors, application developers, and computer science researchers.
:This version uses the intel/11.0.081 compilers for mpicc, mpif90, etc.
:http://www.open-mpi.org/
 
- 1.3.2-intel10-1
:Open MPI is an open source, freely available implementation of both the MPI-1 and MPI-2 standards, combining technologies and resources from several other projects (FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI) in order to build the best MPI library available.  A completely new MPI-2 compliant implementation, Open MPI offers advantages for system and software vendors, application developers, and computer science researchers.
:This version uses the intel/10/10.1.022 compilers for mpicc, mpif90, etc.
:http://www.open-mpi.org/
 
- 1.3.2-intel10-2
:Open MPI is an open source, freely available implementation of both the MPI-1 and MPI-2 standards, combining technologies and resources from several other projects (FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI) in order to build the best MPI library available.  A completely new MPI-2 compliant implementation, Open MPI offers advantages for system and software vendors, application developers, and computer science researchers.
:This version uses the intel/10/10.1.025 compilers for mpicc, mpif90, etc.
:http://www.open-mpi.org/
 
- 1.3.2-intel11-1
:Open MPI is an open source, freely available implementation of both the MPI-1 and MPI-2 standards, combining technologies and resources from several other projects (FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI) in order to build the best MPI library available.  A completely new MPI-2 compliant implementation, Open MPI offers advantages for system and software vendors, application developers, and computer science researchers.
:This version uses the intel/11/11.0.083 compilers for mpicc, mpif90, etc.
:http://www.open-mpi.org/
 
- 1.4.1-intel10-2
:Open MPI is an open source, freely available implementation of both the MPI-1 and MPI-2 standards, combining technologies and resources from several other projects (FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI) in order to build the best MPI library available.  A completely new MPI-2 compliant implementation, Open MPI offers advantages for system and software vendors, application developers, and computer science researchers.
:This version uses the icc/10.1.025 ifort/10.1.025 compilers for mpicc, mpif90, etc.
:http://www.open-mpi.org/
 
- 1.4.1-intel11-1
:Open MPI is an open source, freely available implementation of both the MPI-1 and MPI-2 standards, combining technologies and resources from several other projects (FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI) in order to build the best MPI library available.  A completely new MPI-2 compliant implementation, Open MPI offers advantages for system and software vendors, application developers, and computer science researchers.
:This version uses the intel/11/11.1.056 compilers for mpicc, mpif90, etc.
:http://www.open-mpi.org/
 
- 1.4.1-intel11-2
:Open MPI is an open source, freely available implementation of both the MPI-1 and MPI-2 standards, combining technologies and resources from several other projects (FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI) in order to build the best MPI library available.  A completely new MPI-2 compliant implementation, Open MPI offers advantages for system and software vendors, application developers, and computer science researchers.
:This version uses the icc/11.1.064 ifort/11.1.064 compilers for mpicc, mpif90, etc.
:http://www.open-mpi.org/
 
- 1.4.1-intel11-3, 1.4.1-intel11-4, 1.4.1-intel11-5
:Open MPI is an open source, freely available implementation of both the MPI-1 and MPI-2 standards, combining technologies and resources from several other projects (FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI) in order to build the best MPI library available.  A completely new MPI-2 compliant implementation, Open MPI offers advantages for system and software vendors, application developers, and computer science researchers.
:This version uses the icc/11/11.1.072 ifort/11/11.1.072 compilers for mpicc, mpif90, etc.
:http://www.open-mpi.org/
 
- 1.4.2-intel10-1, 1.4.3-intel10-1
:Open MPI is an open source, freely available implementation of both the MPI-1 and MPI-2 standards, combining technologies and resources from several other projects (FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI) in order to build the best MPI library available.  A completely new MPI-2 compliant implementation, Open MPI offers advantages for system and software vendors, application developers, and computer science researchers.
:This version uses the icc/10 ifort/10 compilers for mpicc, mpif90, etc.
:http://www.open-mpi.org/
 
- 1.4.2-intel11-1
:Open MPI is an open source, freely available implementation of both the MPI-1 and MPI-2 standards, combining technologies and resources from several other projects (FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI) in order to build the best MPI library available.  A completely new MPI-2 compliant implementation, Open MPI offers advantages for system and software vendors, application developers, and computer science researchers.
:This version uses the icc/11/11.1.073 ifort/11/11.1.073 compilers for mpicc, mpif90, etc.
:http://www.open-mpi.org/
 
- 1.4.2-intel12-1, 1.4.3-intel12-1
:Open MPI is an open source, freely available implementation of both the MPI-1 and MPI-2 standards, combining technologies and resources from several other projects (FT-MPI, LA-MPI, LAM/MPI, and PACX-MPI) in order to build the best MPI library available.  A completely new MPI-2 compliant implementation, Open MPI offers advantages for system and software vendors, application developers, and computer science researchers.
:This version uses the icc/12 ifort/12 compilers for mpicc, mpif90, etc.
:http://www.open-mpi.org/
 
=== [[../Catalog/pwgui|pwgui]] ===
 
- '''4.2-1'''
:PWgui - a GUI for the PWscf subset of the Quantum ESPRESSO suite, supporting creation and editing of input files, and support for interactive runs of the PWscf programs.
:The GUI can also use the XCRYSDEN program (http://www.xcrysden.org/) for the visualization of atomic structures from the pw.x input/output files, or for the visualization of properties calculated via the sequence: pw.x-->pp.x (when the property was saved into an XSF file).
:The following PWscf programs are supported:
:* pw.x
:* ph.x
:* pp.x
:* projwfc.x
:* d3.x
:* ld1.x (atomic)
:See also: module help quantum-espresso
:Installed in $QUANTUM_ESPRESSO_GUI_HOME .
:http://www.quantum-espresso.org/
 
=== [[../Catalog/q-chem|q-chem]] ===
 
- 3.2.0.1-1, '''3.2.0.2-1'''
:Q-Chem is a comprehensive ab initio quantum chemistry package. Its capabilities range from the highest performance DFT/HF calculations to high level post-HF correlation methods. Q-Chem tackles a wide range of problems including:
:* Molecular Structures
:* Chemical Reactions
:* Molecular Vibrations
:* Electronic Spectra
:* NMR Spectra
:* Solvation Effects
:Q-Chem offers Fast DFT calculations with accurate linear scaling algorithms A wide range of post-HF correlation methods that are efficient and unique Quantum calculations extended with QM/MM and molecular dynamics Detailed description in Q-Chem paper
:http://www.q-chem.com/
 
=== [[../Catalog/quantum-espresso|quantum-espresso]] ===
 
- '''4.2.1-2'''
:Quantum ESPRESSO (opEn Source Package for Research in Electronic Structure, Simulation, and Optimization) is a suite of computer codes for electronic-structure calculations and materials modeling at the nanoscale. It is based on density-functional theory, plane waves, and pseudopotentials (both norm-conserving and ultrasoft).
:Quantum ESPRESSO builds onto newly-restructured electronic-structure codes (PWscf, PHONON, CP90, FPMD, Wannier) that have been developed and tested by some of the original authors of novel electronic-structure algorithms - from Car-Parrinello molecular dynamics to density-functional perturbation theory - and applied in the last twenty years by some of the leading materials modeling groups worldwide. Innovation and efficiency is still our main focus.
:This build contains the 'historical' QE core set, plus the WanT (Wannier transport) plugin.  GPL-licensed.
:See also: module help wannier90 module help pwgui module help xcrysden
:Installed in $QUANTUM_ESPRESSO_HOME .
:http://www.quantum-espresso.org/ http://www.wannier-transport.org/


=== [[../Catalog/rasmol|rasmol]] ===
= Module Overview =
<!-- {{Catalog Modules}} -->
The module catalog with ''abbreviated version numbers'' is given below.


- 2.6.4-foc-1, '''2.7.5-1'''
You can access this catalog on ''Carbon'' itself using the following commands to
:RasMol2 is a molecular graphics program intended for the visualisation of proteins, nucleic acids and small molecules. The program is aimed at display, teaching and generation of publication quality images. RasMol runs on Microsoft Windows, Apple Macintosh, UNIX and VMS systems. The UNIX and VMS systems require an 8, 24 or 32 bit colour X Windows display (X11R4 or later). The program reads in a molecule co-ordinate file and interactively displays the molecule on the screen in a variety of colour schemes and molecule representations. Currently available representations include depth-cued wireframes, 'Dreiding' sticks, spacefilling (CPK) spheres, ball and stick, solid and strand biomolecular ribbons, atom labels and dot surfaces.
show all available modules,
:http://www.openrasmol.org/
one-line summaries,
and longer descriptions (usually with copyrights and links),
respectively:


=== [[../Catalog/ScientificPython|ScientificPython]] ===
module avail [''name'']
module whatis [''name'']
module help ''name''


- '''2.4.11-1'''
* To use these modules, you must specifically "load" them, possibly down to a specific version, see [[HPC/Module Setup | '''Module setup instructions''']].
:ScientificPython is a collection of Python modules that are useful for scientific computing. In this collection you will find modules that cover basic geometry (vectors, tensors, transformations, vector and tensor fields), quaternions, automatic derivatives, (linear) interpolation, polynomials, elementary statistics, nonlinear least-squares fits, unit calculations, Fortran-compatible text formatting, 3D visualization via VRML, and two Tk widgets for simple line plots and 3D wireframe models. There are also interfaces to the netCDF library (portable structured binary files), to MPI (Message Passing Interface, message-based parallel programming), and to BSPlib (Bulk Synchronous Parallel programming).
<!-- * An exception are a handful of basic modules that are pre-loaded when you log in. -->
:http://dirac.cnrs-orleans.fr/plone/software/scientificpython/
* See also the man page for the module command (<code>man module</code>).


- 2.4.11-3, 2.8-1, 2.8-2
== Applications ==
:ScientificPython is a collection of Python modules useful for scientific computing. Modules cover basic geometry (vectors, tensors, transformations, vector and tensor fields), quaternions, automatic derivatives, (linear) interpolation, polynomials, elementary statistics, nonlinear least-squares fits, unit calculations, Fortran-compatible text formatting, 3D visualization via VRML, and two Tk widgets for simple line plots and 3D wireframe models. There are also interfaces to the netCDF library (portable structured binary files), to MPI (Message Passing Interface, message-based parallel programming), and to BSPlib (Bulk Synchronous Parallel programming).
<div style="column-count:2">
:http://dirac.cnrs-orleans.fr/plone/software/scientificpython/
<pre>
abinit/7
abinit/8.6
amber/12
ambertools/12
ase/3.9/3.9.1-1
atk/12
atk/2015
atk/2016
atk/2017
atlas/3/intel
atomeye/kermode


=== [[../Catalog/siesta|siesta]] ===
beef/0/0.1.2-1
boost/1/gcc


- '''3.0-rc1-3'''
chargemol/2014
:SIESTA (Spanish Initiative for Electronic Simulations with Thousands of Atoms) is both a method and its computer program implementation, to perform electronic structure calculations and ab initio molecular dynamics simulations of molecules and solids. Its main characteristics are:
chargemol/2015
:* Kohn-Sham self-consistent density functional method in the local density (LDA-LSD) or generalized gradient (GGA) approximations.
charm/6
:* norm-conserving pseudopotentials in their fully nonlocal (Kleinman-Bylander) form.
comsol/4
:* numeric finite-range atomic orbital basis, unlimited multiple-zeta and angular momenta, polarization and off-site orbitals.
comsol/5
:* Projects the electron wavefunctions and density onto a real-space grid in order to calculate the Hartree and exchange-correlation potentials and their matrix elements.
comsol/6
:* localized linear combinations of the occupied orbitals (valence-bond or Wannier-like functions), for O(N) time and memory scaling.
cp2k/2/openmpi-1.4
:* dynamic memory allocation
cp2k/5.1/impi
:* serial or parallel execution
:Available for users with confirmed licenses.
:http://www.icmab.es/siesta/


=== [[../Catalog/vasp|vasp]] ===
dacapo/2/openmpi-1.4
ddscat/7/intel


- 4.6.35-mkl-10, '''4.6.35-mkl-11''', 4.6.35-mkl-12, 4.6.35-mkl-7, 4.6.35-mkl-8, 4.6.35-mkl-nozheevx-8
epics/3/gcc
:VASP (Vienna Ab-initio Simulation Package) performs quantum-mechanical molecular dynamics (MD) using ultrasoft Vanderbilt pseudopotentials (US-PP) or the projector augmented wave method (PAW).  Forces and stress can be used to relax atoms into their instantaneous groundstate.
:Available to licensed users only.
:http://cms.mpi.univie.ac.at/vasp/


- vasp-4.6.35-3Apr08
feff/9.6/impi
:VASP (Vienna Ab-initio Simulation Package) is a package for performing quantum-mechanical molecular dynamics (MD) using pseudopotentials and a plane wave basis set. The approach implemented in VASP is based on a finite-temperature local-density approximation (with the free energy as variational quantity) and an exact evaluation of the instantaneous electronic ground state at each MD-step using efficient matrix diagonalization schemes and an efficient Pulay mixing. These techniques avoid all problems occurring in the original Car-Parrinello method which is based on the simultaneous integration of electronic and ionic equations of motion. The interaction between ions and electrons is described using ultrasoft Vanderbilt pseudopotentials (US-PP) or the projector augmented wave method (PAW). Both techniques allow a considerable reduction of the necessary number of plane-waves per atom for transition metals and first row elements. Forces and stress can be easily calculated with VASP and used to relax atoms into their instantaneous groundstate.
fftw3/3.3/impi
:This is version vasp-4.6.35-3Apr08
fftw3/3.3/intel
:Available to licensed users only.
fftw3/3.3/openmpi
:http://cms.mpi.univie.ac.at/vasp/
fox/4/intel


=== [[../Catalog/vasp-vtst|vasp-vtst]] ===
garffield/1/openmpi-1.4
gaussian/09
gaussian/16
gaussview/5
gaussview/6
gnuplot/4.6
gnuplot/5.0
gnuplot/5.2
gnuplot/5.4
GotoBLAS/1
gpaw-setups/0
gpaw/0
gsl/1


- 4.6.35-mkl-10, '''4.6.35-mkl-11''', 4.6.35-mkl-12, 4.6.35-mkl-7, 4.6.35-mkl-8
h5utils/1
:VASP (Vienna Ab-initio Simulation Package) performs quantum-mechanical molecular dynamics (MD) using ultrasoft Vanderbilt pseudopotentials (US-PP) or the projector augmented wave method (PAW).  Forces and stress can be used to relax atoms into their instantaneous groundstate.
harminv/1
:This version contains the VTST patch by Graeme Henkelman, http://theory.cm.utexas.edu/vtsttools/downloads/
hdf5/1.10/intel-19
:Available to licensed users only.
hdf5/1.10/nvhpc-22.5
:http://cms.mpi.univie.ac.at/vasp/
hoomd/0/gcc
hydra/3/gcc


=== [[../Catalog/vasp-vtstscripts|vasp-vtstscripts]] ===
idl/8


- 2.03d-1, '''2009-06-12-1'''
jdftx/0
:Vasp TST Tools - a set of scripts to perform common tasks to help with VASP calculations, and particularly with transition state finding. The included Vasp.pm perl module contains several simple routines that are used by many of the scripts.
jmol/13
:http://theory.cm.utexas.edu/vtsttools/scripts/


=== [[../Catalog/vasp5|vasp5]] ===
lammps/2012
lammps/2015
lammps/2020
lammps/2023-11-21-gpu
lammps/2023-11-21


- 5.2-mkl-3, 5.2-mkl-4, 5.2-mkl-8, 5.2.11-mkl-3, 5.2.11-mkl-tbdyn-4, '''5.2.8-mkl-2''', 5.2.8-mkl-3
layout-beamer/3
:VASP (Vienna Ab-initio Simulation Package) performs quantum-mechanical molecular dynamics (MD) using ultrasoft Vanderbilt pseudopotentials (US-PP) or the projector augmented wave method (PAW).  Forces and stress can be used to relax atoms into their instantaneous groundstate.
libctl/3.2
:Available to licensed users only.
libctl/3
:http://cms.mpi.univie.ac.at/vasp/
libgd/2
libint/1
libint2/2.0
libmatheval/1
libvdwxc/0
libxc/1
libxc/2
libxc/4


=== [[../Catalog/vmd|vmd]] ===
lumerical-DEVICE/6
lumerical-DEVICE/7
lumerical-FDTD/8
lumerical-INTERCONNECT/7
lumerical-INTERCONNECT/8
lumerical-MODE/7
lumerical/2019b
lumerical/2020
lumerical/2020a
lumerical/2021
lumerical/2022
lumerical/2023
lumerical/2024
lumerical/7
lumerical/8


- '''1.8.7-1'''
mathematica/10
:VMD is a molecular visualization program for displaying, animating, and analyzing large biomolecular systems using 3-D graphics and built-in scripting. VMD supports computers running MacOS X, Unix, or Windows, is distributed free of charge, and includes source code.
mathematica/11
:VMD is designed for modeling, visualization, and analysis of biological systems such as proteins, nucleic acids, lipid bilayer assemblies, etc. It may be used to view more general molecules, as VMD can read standard Protein Data Bank (PDB) files and display the contained structure. VMD provides a wide variety of methods for rendering and coloring a molecule: simple points and lines, CPK spheres and cylinders, licorice bonds, backbone tubes and ribbons, cartoon drawings, and others. VMD can be used to animate and analyze the trajectory of a molecular dynamics (MD) simulation. In particular, VMD can act as a graphical front end for an external MD program by displaying and animating a molecule undergoing simulation on a remote computer.
mathematica/12
:http://www.ks.uiuc.edu/Research/vmd/
mathematica/13
matlab/R2013a
matlab/R2019b
meep/1
mesa-gl/18
mesa-gl/6
mesa-gl/7
moab/6
molpro/2009
molpro/2012
mpb/1
mumax3/3.10beta
mumax3/3.9


- 1.8.6
namd/2
:VMD is a molecular visualization program for displaying, animating, and analyzing large biomolecular systems using 3-D graphics and built-in scripting.
netcdf/3
:Copyright © 1995-2006 Board of Trustees of the nUiv. of Illinois and others
nlopt/2
:http://www.ks.uiuc.edu/Research/vmd/
numpy/1
nwchem/6


=== [[../Catalog/vtk|vtk]] ===
octave/4.0
octopus/4
octopus/9
octopus/10.1


- '''5.0.4-icc-3'''
packmol/13
:The Visualization ToolKit (VTK) is an open source, freely available software system for 3D computer graphics, image processing, and visualization used by thousands of researchers and developers around the world. VTK consists of a C++ class library, and several interpreted interface layers including Tcl/Tk, Java, and Python. Professional support and products for VTK are provided by Kitware, Inc. VTK supports a wide variety of visualization algorithms including scalar, vector, tensor, texture, and volumetric methods; and advanced modeling techniques such as implicit modelling, polygon reduction, mesh smoothing, cutting, contouring, and Delaunay triangulation. In addition, dozens of imaging algorithms have been directly integrated to allow the user to mix 2D imaging / 3D graphics algorithms and data. The design and implementation of the library has been strongly influenced by object-oriented principles.
periodic_NBO/2012
:http://www.vtk.org/
phonopy/1.10
povray/3
pwgui/4


=== [[../Catalog/wannier90|wannier90]] ===
q-chem/4.1
q-chem/5
q-chem/6
quantum-espresso/4
quantum-espresso/5.4
quantum-espresso/7.3
quip/0.9.14


- '''1.2-1'''
rasmol/2.6
:The wannier90 code obtains maximally-localised generalised Wannier functions, using them to calculate bandstructures, Fermi surfaces, dielectric properties, sparse Hamiltonians and many things besides.
rasmol/2.7
:The method is those of Marzari and Vanderbilt, except for entangled energy bands, where the method of Souza, Marzari and Vanderbilt is used.
readline/6
:See also: module help quantum-espresso
rings/1.2
:Installed in $WANNIER90_HOME .
rings/1.3
:http://www.wannier.org/
rings/1


=== [[../Catalog/wien2k|wien2k]] ===
ScientificPython/2
scipy/0
siesta/3
siesta/4.0
siesta/4.1-b2
siesta/4.1
slurm/19.05
sparta/2020-07-06
spglib/1
stress-ng/0
stress/1


- '''09.2-1'''
vasp-vtst/4
:WIEN2k allows to perform electronic structure calculations of solids using density functional theory (DFT). It is based on the full-potential (linearized) augmented plane-wave ((L)APW) + local orbitals (lo) method, one among the most accurate schemes for band structure calculations. WIEN2k is an all-electron scheme including relativistic effects and has many features.
vasp-vtstscripts/2012
:Available to registered users only.
vasp-vtstscripts/926
:http://www.wien2k.at/
vasp/4.6
vasp5/5.3-scan
vasp5/5.3
vasp5/5.4-z2pack
vasp5/5.4
vasp6/6.3
vesta/3
vmd/1
voro++/0
vtk/5


=== [[../Catalog/xcrysden|xcrysden]] ===
wannier90/1-z2pack
wannier90/1
wannier90/2
wannier90/3
wien2k/09
wien2k/14.2


- '''1.5.21-1'''
xcrysden/1/1.5.21-1
:XCrySDen (Crystalline Structures and Densities and X) is a crystalline and molecular visualisation program with support for superimposed isosurfaces and contours.
</pre>
:See also: module help quantum-espresso
:Installed in $XCRYSDEN_HOME .
:http://www.xcrysden.org/
</div>
</div>


== Intel development tools ==
== Development tools ==
<code>/opt/intel</code>
<div style="column-count:2">
<div style="background:#eef;">
<pre>
 
cmake/3.18
=== [[../Catalog/icc|icc]] ===


- 10.0.023, 10.1.013, 10.1.015, 10.1.017, 10.1.022, 10.1.025, 11.0.074, 11.0.081, 11.0.083, 11.1.056, 11.1.059, 11.1.064, 11.1.072, '''11.1.073'''
cuda/9
:The Intel C/C++ Compiler for the x86_64/EM64T/Intel64 architecture
cuda/10
cuda/11


=== [[../Catalog/icc/10|icc/10]] ===
gcc/4.4
gcc/4.9
gcc/6.4
gcc/7.3
gcc/8.2
gcc/8.5
gcc/11.1


- 10.0.023, 10.1.013, 10.1.015, 10.1.017, 10.1.022, '''10.1.025'''
glibc/2.23
:The Intel C/C++ Compiler for the x86_64/EM64T/Intel64 architecture


=== [[../Catalog/icc/11|icc/11]] ===
impi/4
impi/5
impi/2017
impi/2018
impi/2019


- 11.0.074, 11.0.081, 11.0.083, 11.1.056, 11.1.059, 11.1.064, 11.1.072, '''11.1.073'''
intel/11
:The Intel C/C++ Compiler for the x86_64/EM64T/Intel64 architecture
intel/12
 
intel/13
=== [[../Catalog/icc/12|icc/12]] ===
intel/14
 
intel/15
- 12.0.2, '''12.0.4'''
intel/16
:The Intel C/C++ Compiler for the x86_64/EM64T/Intel64 architecture
intel/17
 
intel/18
=== [[../Catalog/icc/ia32|icc/ia32]] ===
intel/19
 
intel/2021
- 10.0.023, 10.1.013, 10.1.015, 10.1.017, 10.1.022, 10.1.025, 11.0.074, 11.0.081, 11.0.083, 11.1.056, 11.1.059, 11.1.064, 11.1.072, '''11.1.073'''
:The Intel C/C++ Compiler for the ia32 architecture
 
=== [[../Catalog/idb|idb]] ===
 
- 10.0.023, 10.1.013, 10.1.015, 10.1.017, 10.1.022, 10.1.025, 11.0.074, 11.0.081, 11.0.083, 11.1.059, 11.1.064, 11.1.072, '''11.1.073'''
:The Intel debugger for the x86_64/EM64T/Intel64 architecture
 
=== [[../Catalog/idb/10|idb/10]] ===
 
- 10.0.023, 10.1.013, 10.1.015, 10.1.017, 10.1.022, '''10.1.025'''
:The Intel debugger for the x86_64/EM64T/Intel64 architecture
 
=== [[../Catalog/idb/11|idb/11]] ===
 
- 11.0.074, 11.0.081, 11.0.083, 11.1.059, 11.1.064, 11.1.072, '''11.1.073'''
:The Intel debugger for the x86_64/EM64T/Intel64 architecture
 
=== [[../Catalog/idb/12|idb/12]] ===
 
- 12.0.2, '''12.0.4'''
:The Intel debugger for the x86_64/EM64T/Intel64 architecture
 
=== [[../Catalog/idb/ia32|idb/ia32]] ===
 
- 10.0.023, 10.1.013, 10.1.015, 10.1.017, 10.1.022, 10.1.025, 11.0.074, 11.0.081, 11.0.083, 11.1.059, 11.1.064, 11.1.072, '''11.1.073'''
:The Intel debugger for the ia32 architecture
 
=== [[../Catalog/ifort|ifort]] ===
 
- 10.0.023, 10.1.013, 10.1.015, 10.1.017, 10.1.022, 10.1.025, 11.0.074, 11.0.081, 11.0.083, 11.1.056, 11.1.059, 11.1.064, 11.1.072, '''11.1.073'''
:The Intel Fortran Compiler for the x86_64/EM64T/Intel64 architecture
 
=== [[../Catalog/ifort/10|ifort/10]] ===
 
- 10.0.023, 10.1.013, 10.1.015, 10.1.017, 10.1.022, '''10.1.025'''
:The Intel Fortran Compiler for the x86_64/EM64T/Intel64 architecture
 
=== [[../Catalog/ifort/11|ifort/11]] ===
 
- 11.0.074, 11.0.081, 11.0.083, 11.1.056, 11.1.059, 11.1.064, 11.1.072, '''11.1.073'''
:The Intel Fortran Compiler for the x86_64/EM64T/Intel64 architecture
 
=== [[../Catalog/ifort/12|ifort/12]] ===
 
- '''12.0.2'''
:The Intel Fortran Compiler for the x86_64/EM64T/Intel64 architecture
 
=== [[../Catalog/ifort/ia32|ifort/ia32]] ===
 
- 10.0.023, 10.1.013, 10.1.015, 10.1.017, 10.1.022, 10.1.025, 11.0.074, 11.0.081, 11.0.083, 11.1.056, 11.1.059, 11.1.064, 11.1.072, '''11.1.073'''
:The Intel Fortran Compiler for the ia32 architecture
 
=== [[../Catalog/impi|impi]] ===
 
- 3.0, 3.1, 3.2.0.011, 3.2.2.006, '''4.0.0.025''', 4.0.0.028, 4.0.1.007, 4.0.2.003
:The Intel MPI implementation for the x86_64/EM64T/Intel64 architecture
 
=== [[../Catalog/impi/ia32|impi/ia32]] ===
 
- 3.0, 3.1, 3.2.0.011, '''3.2.2.006'''
:The Intel MPI implementation for the ia32 architecture
 
=== [[../Catalog/intel|intel]] ===
 
- '''11.0.081'''
:Compound: Intel compilers and MKL version 11
:icc/11.0.081 ifort/11.0.081 mkl/10.1.1.019 idb/11.0.081
:Details at the individual modules
 
- 10.1.015
:Compound: Intel compilers version 10
:icc/10.1.015 ifort/10.1.015 idb/10.0.023
:Details at the individual modules
 
- 10.1.022
:Compound: Intel compilers version 10
:icc/10.1.022 ifort/10.1.022 idb/10.1.022
:Details at the individual modules
 
- 11.0.074
:Compound: Intel compilers version 11 and the MKL 10.1
:icc/11.0.074 ifort/11.0.074 mkl/10.1.1.019 idb/11.0.074
:Details at the individual modules
 
=== [[../Catalog/intel-licenses|intel-licenses]] ===
:(No Module Specific Help for intel-licenses)
 
=== [[../Catalog/intel/10|intel/10]] ===
 
- '''10.1.025'''
:Compound: Intel compilers version 10
:icc/10.1.025 ifort/10.1.025 idb/10.1.025
:Details at the individual modules
 
- 10.1.015
:Compound: Intel compilers version 10
:icc/10.1.015 ifort/10.1.015 idb/10.0.023
:Details at the individual modules
 
- 10.1.022
:Compound: Intel compilers version 10
:icc/10.1.022 ifort/10.1.022 idb/10.1.022
:Details at the individual modules
 
=== [[../Catalog/intel/11|intel/11]] ===
 
- '''11.1.073'''
:Compound: Intel compilers and MKL version 11
:icc/11.1.073 ifort/11.1.073
:Details at the individual modules
 
- 11.0.074
:Compound: Intel compilers version 11 and the MKL 10.1
:icc/11.0.074 ifort/11.0.074 mkl/10.1.1.019 idb/11.0.074
:Details at the individual modules
 
- 11.0.081
:Compound: Intel compilers and MKL version 11
:icc/11.0.081 ifort/11.0.081 mkl/10.1.1.019 idb/11.0.081
:Details at the individual modules
 
- 11.0.083
:Compound: Intel compilers and MKL version 11
:icc/11.0.083 ifort/11.0.083 mkl/10.1.2.024 idb/11.0.083
:Details at the individual modules
 
- 11.1.056
:Compound: Intel compilers and MKL version 11
:icc/11.1.056 ifort/11.1.056
:Details at the individual modules
 
- 11.1.064
:Compound: Intel compilers and MKL version 11
:icc/11.1.064 ifort/11.1.064
:Details at the individual modules
 
=== [[../Catalog/mkl|mkl]] ===
 
- 10.0.005, 10.0.2.018, 10.0.3.020, 10.0.4.023, 10.1.0.015, 10.1.1.019, 10.1.2.024, 10.2.2.025, 10.2.3.029, 10.2.4.032, 10.2.5.035, '''10.2.6.038''', 10.3.2, 10.3.4, 9.1.023
:The Intel Math Kernel Library for the x86_64/EM64T/Intel64 architecture
 
=== [[../Catalog/mkl/ia32|mkl/ia32]] ===
 
- 10.0.005, 10.0.2.018, 10.0.3.020, 10.0.4.023, 10.1.0.015, 10.1.1.019, 10.1.2.024, 10.2.2.025, 10.2.3.029, 10.2.4.032, 10.2.5.035, 10.2.6.038, '''9.1.023'''
:The Intel Math Kernel Library for the ia32 architecture
</div>


== Default modules ==
java/1.7/1.7.0_25-fcs
<code>/usr/share/Modules</code>
<div style="background:#eee;">


=== [[../Catalog/dot|dot]] ===
mpich/3
:Adds `.' to your PATH environment variable
:This makes it easy to add the current working directory to your PATH environment variable.  This allows you to run executables in your current working directory without prepending ./ to the excutable name
:Version 3.2.6


=== [[../Catalog/module-cvs|module-cvs]] ===
nvhpc-byo-compiler/22.5
:This module will set up aliases and environment variables for easy check-out of the most recent version of the environment modules package.
nvhpc-nompi/22.5
:For CVS access - do the 'login' first then the 'get' when prompted for a password - just hit return
nvhpc/22.5
:* modules-login - login into the modules CVS repository anonymously
:* modules-get - retrieve modules sources
:For anonymous ftp access cd to /pub/modules once logged in when prompted for a username/password - give it anonymous and your email address
:* modules-ftp - ftp into the modules tar ball directory anonymously.  Go to /pub/sourceforge/m/mo/modules
:Version 3.2.6


=== [[../Catalog/module-info|module-info]] ===
openmpi/1.4
:This module returns all the various module-info values in whatever mode you use (except in  `whatis' mode)
openmpi/1.6
:Version 3.2.6
openmpi/1.8
openmpi/1.10


=== [[../Catalog/modules|modules]] ===
perl/5/5.24.1-2
:modules - loads the modules software & application environment
:This adds /usr/share/Modules/* to several of the environment variables.
:Version 3.2.6


=== [[../Catalog/null|null]] ===
python-anaconda/2.7/4
:This module does absolutely nothing. It's meant simply as a place holder in your dot file initialization.
python-anaconda/3.5/4
:Version 3.2.6
python-centos/2.6/gcc-4.4
python-centos/2.7/gcc-4.8
python-env-anaconda/2.7/4
python-env-anaconda/3.5/4
python-env-intel/2.7/2017
python-env-intel/2.7/2018
python-env-intel/3.5/2017
python-env-intel/3.6/2018
python-intel/2.7/2015
python-intel/2.7/2017
python-intel/2.7/2018
python-intel/3.5/2015
python-intel/3.5/2017
python-intel/3.6/2018
python/2.7/gcc-4.1
python/2.7/gcc-4.4
python/3.5/gcc-4.4


=== [[../Catalog/use.own|use.own]] ===
</pre>
:This module file will add $HOME/privatemodules to the list of directories that the module command will search for modules.  Place your own module files here. This module, when loaded, will create this directory if necessary.
:Version 3.2.6
</div>
</div>

Latest revision as of 15:55, October 17, 2024

This is the catalog for HPC applications on Carbon. Applications are often referred to as modules because they are managed using the Environment Modules package.


Local documentation

Documentation about local installation and usage is available for some applications and development packages.

You can also locate those pages by using the "Search CNM Wiki" box near the top of the current page.

Applications

Development tools

Module Overview

The module catalog with abbreviated version numbers is given below.

You can access this catalog on Carbon itself using the following commands to show all available modules, one-line summaries, and longer descriptions (usually with copyrights and links), respectively:

module avail [name]
module whatis [name]
module help name
  • To use these modules, you must specifically "load" them, possibly down to a specific version, see Module setup instructions.
  • See also the man page for the module command (man module).

Applications

abinit/7
abinit/8.6
amber/12
ambertools/12
ase/3.9/3.9.1-1
atk/12
atk/2015
atk/2016
atk/2017
atlas/3/intel
atomeye/kermode

beef/0/0.1.2-1
boost/1/gcc

chargemol/2014
chargemol/2015
charm/6
comsol/4
comsol/5
comsol/6
cp2k/2/openmpi-1.4
cp2k/5.1/impi

dacapo/2/openmpi-1.4
ddscat/7/intel

epics/3/gcc

feff/9.6/impi
fftw3/3.3/impi
fftw3/3.3/intel
fftw3/3.3/openmpi
fox/4/intel

garffield/1/openmpi-1.4
gaussian/09
gaussian/16
gaussview/5
gaussview/6
gnuplot/4.6
gnuplot/5.0
gnuplot/5.2
gnuplot/5.4
GotoBLAS/1
gpaw-setups/0
gpaw/0
gsl/1

h5utils/1
harminv/1
hdf5/1.10/intel-19
hdf5/1.10/nvhpc-22.5
hoomd/0/gcc
hydra/3/gcc

idl/8

jdftx/0
jmol/13

lammps/2012
lammps/2015
lammps/2020
lammps/2023-11-21-gpu
lammps/2023-11-21

layout-beamer/3
libctl/3.2
libctl/3
libgd/2
libint/1
libint2/2.0
libmatheval/1
libvdwxc/0
libxc/1
libxc/2
libxc/4

lumerical-DEVICE/6
lumerical-DEVICE/7
lumerical-FDTD/8
lumerical-INTERCONNECT/7
lumerical-INTERCONNECT/8
lumerical-MODE/7
lumerical/2019b
lumerical/2020
lumerical/2020a
lumerical/2021
lumerical/2022
lumerical/2023
lumerical/2024
lumerical/7
lumerical/8

mathematica/10
mathematica/11
mathematica/12
mathematica/13
matlab/R2013a
matlab/R2019b
meep/1
mesa-gl/18
mesa-gl/6
mesa-gl/7
moab/6
molpro/2009
molpro/2012
mpb/1
mumax3/3.10beta
mumax3/3.9

namd/2
netcdf/3
nlopt/2
numpy/1
nwchem/6

octave/4.0
octopus/4
octopus/9
octopus/10.1

packmol/13
periodic_NBO/2012
phonopy/1.10
povray/3
pwgui/4

q-chem/4.1
q-chem/5
q-chem/6
quantum-espresso/4
quantum-espresso/5.4
quantum-espresso/7.3
quip/0.9.14

rasmol/2.6
rasmol/2.7
readline/6
rings/1.2
rings/1.3
rings/1

ScientificPython/2
scipy/0
siesta/3
siesta/4.0
siesta/4.1-b2
siesta/4.1
slurm/19.05
sparta/2020-07-06
spglib/1
stress-ng/0
stress/1

vasp-vtst/4
vasp-vtstscripts/2012
vasp-vtstscripts/926
vasp/4.6
vasp5/5.3-scan
vasp5/5.3
vasp5/5.4-z2pack
vasp5/5.4
vasp6/6.3
vesta/3
vmd/1
voro++/0
vtk/5

wannier90/1-z2pack
wannier90/1
wannier90/2
wannier90/3
wien2k/09
wien2k/14.2

xcrysden/1/1.5.21-1

Development tools

cmake/3.18

cuda/9
cuda/10
cuda/11

gcc/4.4
gcc/4.9
gcc/6.4
gcc/7.3
gcc/8.2
gcc/8.5
gcc/11.1

glibc/2.23

impi/4
impi/5
impi/2017
impi/2018
impi/2019

intel/11
intel/12
intel/13
intel/14
intel/15
intel/16
intel/17
intel/18
intel/19
intel/2021

java/1.7/1.7.0_25-fcs

mpich/3

nvhpc-byo-compiler/22.5
nvhpc-nompi/22.5
nvhpc/22.5

openmpi/1.4
openmpi/1.6
openmpi/1.8
openmpi/1.10

perl/5/5.24.1-2

python-anaconda/2.7/4
python-anaconda/3.5/4
python-centos/2.6/gcc-4.4
python-centos/2.7/gcc-4.8
python-env-anaconda/2.7/4
python-env-anaconda/3.5/4
python-env-intel/2.7/2017
python-env-intel/2.7/2018
python-env-intel/3.5/2017
python-env-intel/3.6/2018
python-intel/2.7/2015
python-intel/2.7/2017
python-intel/2.7/2018
python-intel/3.5/2015
python-intel/3.5/2017
python-intel/3.6/2018
python/2.7/gcc-4.1
python/2.7/gcc-4.4
python/3.5/gcc-4.4