HPC/Applications/lammps: Difference between revisions
m (→Binaries) |
m (→Binaries) |
||
Line 21: | Line 21: | ||
Simply name the appropriate binary in the job file, typically as argument to <code>mpirun</code>: | Simply name the appropriate binary in the job file, typically as argument to <code>mpirun</code>: | ||
<syntaxhighlight lang="bash"> | <syntaxhighlight lang="bash"> | ||
… | |||
mpirun -machinefile $PBS_NODEFILE -np $PBS_NP \ | mpirun -machinefile $PBS_NODEFILE -np $PBS_NP \ | ||
lmp_openmpi -in in.script | lmp_openmpi -in in.script |
Revision as of 22:40, November 1, 2012
Binaries
As of module version lammps/2012-10-10-3 several LAMMPS binaries are provided within one module. Binaries compiled with GPU support will not run on nodes without a GPU. (CUDA libraries are deliberately only installed on GPU nodes.)
Binary name | Description |
---|---|
lmp_openmpi-main |
The baseline binary, containing the packages shown by module help lammps .
|
lmp_openmpi |
The distribution's default name; synonym for lmp_openmpi-main ;
|
lmp_openmpi-gpu |
The package "gpu" and all packages from main. |
lmp_openmpi-user-cuda |
The package "user-cuda" and all packages from main. |
lmp_openmpi-jr |
A custom build for user J.R. |
Simply name the appropriate binary in the job file, typically as argument to mpirun
:
…
mpirun -machinefile $PBS_NODEFILE -np $PBS_NP \
lmp_openmpi -in in.script
Benchmark
Using a sample workload from Sanket ("run9"), I tested various OpenMPI options on both node types.
LAMMPS performs best on gen2 nodes without extra options, and pretty well on gen1 nodes over ethernet(!).
Job tag | Node type | Interconnect | Additional OpenMPI options | Relative speed (1000 steps/3 hours) |
Notes |
---|---|---|---|---|---|
gen1 | gen1 | IB | (none) | 36 | |
gen1srqpin | gen1 | IB | -mca btl_openib_use_srq 1 -mca mpi_paffinity_alone 1 |
39 | |
gen1eth | gen1 | Ethernet | -mca btl self,tcp | 44 | fastest for gen1 |
gen2eth | gen2 | Ethernet | -mca btl self,tcp | 49 | |
gen2srq | gen2 | IB | -mca btl_openib_use_srq 1 | 59 | |
gen2 | gen2 | IB | (none) | 59 | fastest for gen2 |
Sample job file gen1
#!/bin/bash
#PBS -l nodes=10:ppn=8:gen1
#PBS -l walltime=1:00:00:00
#PBS -N <jobname>
#PBS -A <account>
#
#PBS -o job.out
#PBS -e job.err
#PBS -m ea
# change into the directory where qsub will be executed
cd $PBS_O_WORKDIR
mpirun -machinefile $PBS_NODEFILE -np $PBS_NP \
-mca btl self,tcp \
lmp_openmpi < lammps.in > lammps.out 2> lammps.err
Sample job file gen2
#!/bin/bash
#PBS -l nodes=10:ppn=8:gen2
#PBS -l walltime=1:00:00:00
#PBS -N <jobname>
#PBS -A <account>
#
#PBS -o job.out
#PBS -e job.err
#PBS -m ea
# change into the directory where qsub will be executed
cd $PBS_O_WORKDIR
mpirun -machinefile $PBS_NODEFILE -np $PBS_NP \
lmp_openmpi < lammps.in > lammps.out 2> lammps.err
MPI/OpenMP hybrid parallel runs
LAMMPS modules since 2012 are compiled with yes-user-omp
, permitting multi-threaded runs of selected pair styles, and in particular MPI/OpenMP hybrid parallel runs.
Be careful how to allocate CPU cores on compute nodes. Note the following:
- The number of cores on a node reserved for your use is determined by the qsub
ppn=...
parameter. - The number of MPI tasks (call it
ppn_mpi
) running on a node is determined by options to mpirun. - The number of threads that each MPI task runs with is determined by the environment variable
OMP_NUM_THREADS
, which is 1 by default on Carbon. - The number of physical cores per node for gen1 and gen2 nodes is 8.
- gen2 nodes have hyperthreading active, meaning there are 16 logical cores per node. However:
- The method shown below cannot consistenly use hyperthreading since PBS is told that nodes have exactly 8 cores. ppn requests higher than that cannot be fulfilled.
- My (stern) own benchmarks for a memory-intensive DFT program were underwhelming.
- The LAMMPS OpenMP author reports the same (near the end of the section):
Using threads on hyper-threading enabled cores is usually counterproductive, as the cost in additional memory bandwidth requirements is not offset by the gain in CPU utilization through hyper-threading.
Sample job script for hybrid parallel runs
In summary, the job script's essential parts are:
#!/bin/bash
#PBS -l nodes=2:ppn=8
#PBS -l walltime=1:00:00
...
ppn_mpi=2 # user choice
ppn_pbs=$( uniq -c $PBS_NODEFILE | awk '{print $1; exit}' ) # grab first (and usually only) ppn value of the job
OMP_NUM_THREADS=$(( ppn_active / ppn_mpi )) # calculate number of threads available per MPI process (integer arithmetic!)
mpirun -x OMP_NUM_THREADS \
-machinefile $PBS_NODEFILE \
--npernode $ppn_mpi \
lmp_openmpi \
-sf omp \
-in in.script
Diagnostic for hybrid parallel runs
- LAMMPS echoes it parallelization scheme first thing in the output:
LAMMPS (10 Feb 2012) using 4 OpenMP thread(s) per MPI task ... 1 by 2 by 2 MPI processor grid 104 atoms ...
and near the end:
Loop time of 124.809 on 16 procs (4 MPI x 4 OpenMP) for 30000 steps with 104 atoms
- To see if OpenMP is really active, log into a compute node while a job is running and run
top
orpsuser
– The%CPU
field should be aboutOMP_NUM_THREADS × 100%
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 8047 stern 25 0 4017m 33m 7540 R 401.8 0.1 1:41.60 lmp_openmpi 8044 stern 25 0 4017m 33m 7540 R 399.9 0.1 1:43.50 lmp_openmpi 4822 root 34 19 0 0 0 S 2.0 0.0 115:34.98 kipmi0
References
- HPC/Submitting_Jobs/Advanced node selection#Multithreading (OpenMP)
- LAMMPS documentation for the OMP package
- Command-line options (explanation for -sf style or -suffix style)